OmROn

ZENE

OmROn

Authorized Distributor:

ZEN Programmable Relay
 Operation Manual

Printed in August 2005

This operation manual is for ZEN-10C3 \square R- \square-V2 (version-2) ZEN Programmable Relays only. For version-1 or pre-version-1 ZEN Programmable Relays, refer to operation manual with Cat. No. Z183.

Preface

OMRON products are manufactured for use according to proper procedures by a qualified operator and only for the purposes described in this manual.

The ZEN is a compact and highly functional controller that can be used to easily automate small-scale applications. Its development has drawn on OMRON's advanced control technology and expertise in manufacturing various types of controllers.

New Economy-type CPU Units (ZEN-10C3 \square R- \square-V2) with the following changes have been added to the series. Twin timer operation has been added. Pulse output operation, multiple-day operation for weekly timers, and 8-digit counters with highspeed counting have also been added. These models cannot be connected to Expansion I/O Units.
This manual describes how to use the ZEN-10C3 \square R- \square-V2 (version 2). Before using the ZEN, read this manual carefully so that you can use the ZEN correctly. Keep the manual close at hand so that you can refer to it whenever necessary.

Intended Audience

This manual is intended for the following readers.

- Persons in charge of introducing FA devices
- Persons who design FA systems
- Persons who install or connect FA devices
- Persons who manage working FA installations

Persons who use this product must have sufficient knowledge of electrical systems (i.e., an electrical engineer or the equivalent).

Warranty and Application Considerations

Read and Understand this Manual

Please read and understand this manual before using the product. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.
In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Consideration

Application Consideration

SUITABILITY FOR USE

THE PRODUCTS CONTAINED IN THIS DOCUMENT ARE NOT SAFETY RATED. THEY ARE NOT DESIGNED OR RATED FOR ENSURING SAFETY OF PERSONS, AND SHOULD NOT BE RELIED UPON AS A SAFETY COMPONENT OR PROTECTIVE DEVICE FOR SUCH PURPOSES. Please refer to separate catalogs for OMRON's safety rated products.
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the product.
At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.
The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property. Please know and observe all prohibitions of use applicable to the products. NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Disclaimers

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA

Performance data given in this manual is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

Copyright and Copy Permission

Copyright and Copy Permission

COPYRIGHT AND COPY PERMISSION

This document shall not be copied for sales or promotions without permission.
This document is protected by copyright and is intended solely for use in conjunction with the product. Please notify us before copying or reproducing this document in any manner, for any other purpose. If copying or transmitting this document to another, please copy or transmit it in its entirety.

OMRON Product References

All OMRON products are capitalized in this manual. The word "Unit" is also capitalized when it refers to an OMRON product, regardless of whether or not it appears in the proper name of the product.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of information.

Note Indicates information of particular interest for efficient and convenient operation of the product.

1,2,3... 1. Indicates lists of one sort or anther, such as procedures, checklists, etc.
|| Precautions for Correct Use ||
|| Precautions for Safe Use ||
Indicates precautionary information that should be heeded in using the ZEN.

About this Manual

This operation manual is for ZEN-10C3 $\square \mathrm{R}-\square-\mathrm{V} 2$ models of version-2 (-V2) ZEN Programmable Relays only. For version-1 or pre-version-1 ZEN Programmable Relays, refer to operation manual with Cat. No. Z183.

Manual Contents

Section 1 gives an outline of the ZEN, including descriptions of ZEN features and functions.
Section 2 explains how to mount and wire the ZEN and how to connect sensors.
Section 3 explains basic settings required to operate the ZEN and setting methods for internal bits.
Section 4 describes the many convenient functions provided by the ZEN.
Section 5 describes how to use optional products, such as Battery Units and Memory Cassettes.
Section 6 lists the error messages and provides probable causes and countermeasures for troubleshooting.
The Appendices provide specifications, technical references, version update information, allocations and setting sheets, and other information related to ZEN operation.

Related Manual

Manual	Contents	Cat. No.
ZEN Support Software Operation Manual	Describes installation and operating procedures for the ZEN Support Software.	Z184-E1-02

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of information.

Note Indicates information of particular interest for efficient and convenient operation of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

|| Precautions for Correct Use ||

Indicates precautionary information that should be heeded to ensure correct use of the ZEN.

|| Precautions for Safe Use ||

Indicates precautionary information that should be heeded to ensure safe use of the ZEN.

(3) 자 (3) (1)

DEL 6 ALT 7
(1) (1)
© ${ }^{-3}$

Indicates that the display (the word "LANGUAGE" in this case) is flashing. In this manual, this state is described by saying that the "flashing cursor" is at the word "LANGUAGE". In this state it is possible to change settings and the position of the cursor.

Indicates that the display (the letter " H " in this case) is flashing in reverse video. In this manual, this state is described by saying that the "highlighted cursor" is at the word " H ". In this state it is not possible to change settings but the cursor can be changed to the flashing cursor by pressing the OK button.

Indicate the buttons that needs to be pressed in operating procedures. Press each button once.

Indicate buttons that needs to be pressed in operating procedures. Press one of the buttons once or more.

OMRON, 2005

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of OMRON.
No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

TABLE OF CONTENTS

Preface iv
Warranty and Application Considerations v
OMRON Product References viii
Visual Aids viii
About this Manual ix
Visual Aids x
Precautions xiii
Safety Precautions xiv
Precautions for Safe Use xvi
Precautions for Correct Use xviii
Conformance to EC Directives xx
SECTION 1
Outline 1
1-1 Outline 2
1-2 Features and Models 8
1-3 Nomenclature and Basic Operation 11
1-4 Memory Areas 21
1-5 Allocating I/O Bit Numbers 24
1-6 Preparations for Operation 25
SECTION 2
Installation and Wiring 27
2-1 Mounting 28
2-2 Wiring 29
SECTION 3
Programming and Operating Methods 41
3-1 Selecting Display Language 43
3-2 Setting the Date and Time 44
3-3 Creating Ladder Programs 46
3-4 Confirming Ladder Program Operation 55
3-5 Correcting Ladder Programs 57
3-6 Using Timers (T) and Holding Timers (\#) 60
3-7 Using Counters (C) and the 8-Digit Counter (F) 64
3-8 Using Weekly Timers (@) 67
3-9 Using Calendar Timers (*) 72
3-10 Analog Inputs (Analog Comparators (A)) 74
3-11 Comparing Timer/Counter Present Values Using Comparators (P) 77

TABLE OF CONTENTS

3-12 Comparing the 8-Digit Counter (F) Present Value Using 8-Digit Comparators (G) 80
3-13 Displaying Messages (Display Bits (D)) 82
3-14 Using Button Input Bits (B) 85
SECTION 4
Special Functions 87
4-1 Protecting Programs 88
4-2 Stabilizing Input Operations 90
4-3 Changing Backlight Automatic Cutout Time 92
4-4 Setting Daylight Saving Time (DST) 93
4-5 Reading System Information 94
SECTION 5
Optional Products 95
5-1 Mounting Battery Units 96
5-2 Using Memory Cassettes 97
5-3 Connecting the ZEN Support Software 99
SECTION 6
Troubleshooting. 101
6-1 Troubleshooting 102
6-2 Error Messages 102
6-3 Deleting Error Messages 104
Appendices
A Specifications 105
B Ladder Program Execution 113
C Operating Mode at Startup 117
D Version Upgrades 119
E Application Examples 125
F Allocations and Setting Table 139
Index 145
Revision History 149

Precautions

This section provides precautions for using the ZEN Programmable Relays.

This information contained in this section is important for the safe and reliable application of the ZEN. You must read this section and understand the information before attempting to set up for a ZEN.
Safety Precautions xiv
Precautions for Safe Use xvi
Precautions for Correct Use xviii
Conformance to EC Directives xx

Safety Precautions

Definition of Precautionary Information

The following notation is used in this manual to provide precautions required to ensure safe usage of the product.

The safety precautions that are provided are extremely important to safety. Always read and heed the information provided in all safety precautions.

The following notation is used.

WARNING
Indicates a potentially hazardous situation which, if not avoided, will result in minor or moderate injury, or may result in serious injury or death. Additionally, there may be significant property damage.

\triangle CAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury or in property damage.

Symbols

Symbol		Meaning
Caution		General Caution Indicates non-specific general cautions, warnings, and dangers.
		Electrical Shock Caution Indicates possibility of electric shock under specific conditions.
		Explosion Caution Indicates possibility of explosion under specific conditions.
	Disassembly Prohibition Indicates prohibitions when there is a possibility of injury, such as from electric shock, as the result of disassembly.	
Caution	General Caution Indicates non-specific general cautions, warnings, and dangers.	

Precautions

\triangle WARNING

Serious human hazard may occasionally occur due to ignition or rupture of the lithium battery used in the Battery Unit. Do not short the battery terminals or charge, disassemble, deform under pressure, or incinerate the battery.
Never use any battery that has been dropped on the floor or otherwise
 subjected to excessive shock.

\triangle CaUtion

Electric shock, fire, or malfunction may occur. Do not disassemble, modify, or repair the ZEN or touch any of the internal parts.

Electrical shock may occur. Never touch the I/O terminals, computer connector, or Battery Unit connector while power is being supplied.

Electrical shock may occur. Do not remove the Expansion Unit connector
 cover.

Fires may occasionally occur. Tighten the terminal block screws to the specified torque (0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$) so that they do not become loose.

Precautions for Safe Use

Please observe the following precautions for safe use of this products.

Circuit Design

1. All interface connectors and battery connector are live parts, they may not be directly connected to Softy Extra Low Voltage (SELV) circuit or to accessible conductive parts.
For the programming units and Personal Computers use only the connecting cable ZEN-CIF01 (optional accessory) manufactured by OMRON.
ZEN-CIF01 provides safe (reinforced) insulation between Personal Computers and ZEN.
2. Provide emergency stop circuits, external interlock circuits, limit circuits, and other safety circuits in addition to any provided within the ZEN control circuits to ensure safety of the overall system in the event of ZEN failure or external factors.
3. If the ZEN discovers an error during self-diagnosis, operation will be stopped and all outputs will be turned OFF. As a countermeasure for such problems, external safety measures must be provided to ensure safety in the overall system.
4. Outputs from the ZEN may remain ON or OFF due to faults in internal circuits such as output relay fusing or burning, or output transistor destruction. As a countermeasure for such problems, external safety measures must be provided to ensure safety in the overall system.
5. Fail-safe measures must be taken by the user to ensure overall system safety in the event of broken signal lines or momentary power interruptions.
6. The durability of the output relays is largely affected by the switching conditions. Confirm the operation of the system under actual operating conditions and set the switching frequency to ensure that adequate performance will be provided. Insulation faults and burning in the ZEN may result if relays are used after their performance has deteriorated.

System Startup and Program Changes

1. Check the user program for proper execution before actually running it on the Unit.
2. Disconnect the output lines from the system before testing operation in any system in which incorrect operation can result in injury or equipment damage.
3. Confirm safety before attempting any of the following operations.

- Changing the operating mode (RUN/STOP).
- Using the button switches.
- Changing bit status or parameter settings.

4. Double-check all wiring before turning ON the power supply.

Installation and Wiring

1. Do not allow the ZEN to fall during installation.
2. Be sure that the DIN Track mounting levers, Memory Cassettes, Battery Units, cable connectors, and other items with locking devices are properly locked into place. Improper locking may result in malfunction.
3. Tighten mounting screws to the following torques.

CPU Units: $1.03 \mathrm{~N} \cdot \mathrm{~m}$ max.
4. Use wires with cross-sectional areas of 0.2 to $2.5 \mathrm{~mm}^{2}$ (equivalent to AWG24 to AWG14) for wiring and strip them for 6.5 mm . If using stranded wires, always connect straight crimp terminals (0.25 to $2.5 \mathrm{~mm}^{2}$).

Handling

1. The environment of use of ZEN is "Pollution degree 2" and "Overvoltage category II" specified in IEC60664-1.
2. Always use the ZEN within the rated ambient operating temperature and humidity. The rated ambient operating temperature is 0 to $55^{\circ} \mathrm{C}$. If the ZEN is used near sources of heat, such as a power supply, the internal temperature of the ZEN may increase, lowering the durability of the ZEN.
3. Discharge static electricity from your body, e.g., by touching a grounded metal plate, before touching any Unit.
4. The exterior of the Units will be damaged if it comes into contact with organic solvents (e.g., benzene or paint thinner), strong alkalies, or strong acids. Never allow such substances to come into contact with the Units.
5. Do not apply voltages exceeding the rated voltages. Internal elements may be destroyed.
6. Short failures or open failures may result from the destruction of output elements. Do not use loads that exceed the rated output current.

Maintenance

When replacing a CPU Unit, transfer to the new Unit and confirm all settings for clock data, internal holding bits, holding timers, and counters before starting operation again.

Transportation and Storage

1. Use special packaging boxes when transporting the ZEN and do not subject it to excessive shock or vibration or drop it during shipment.
2. Store the ZEN in within the rated ranges. If the ZEN has been stored at $-10^{\circ} \mathrm{C}$ or lower, allow it to stand at room temperature for 3 hours or longer before turning ON the power supply.

Precautions for Correct Use

Installation Environment

1. Do not install the ZEN in the following locations.

- Locations subject to radical changes in temperature
- Location with high humidity subject to condensation
- Locations subject to excessive dust or dirt
- Locations subject to corrosive gas
- Locations subject to direct sunlight

2. Do not install the ZEN in locations subject to shock or vibration. Extended use in such location may cause damage from stress.
3. In environments subject to static electricity (e.g., close to pipes conveying forming materials, powders, or fluid materials), separate the ZEN as far as possible from the source of static electricity.
4. The ZEN is neither waterproof nor oil-proof. Do not use it in locations subject to water or oil.
5. Use the ZEN within the allowable power supply voltage range. Be particularly careful in locations with bad power supply conditions, e.g., large fluctuations in the power supply voltage.
6. Do not install the ZEN in locations subject to excessive noise, which may cause the ZEN to fail.
7. Take appropriate and sufficient countermeasures when installing systems in the following locations:

- Locations subject to strong electromagnetic fields
- Locations subject to possible exposure to radioactivity

Power Supply

1. Always turn OFF the power supply to the ZEN before attempting any of the following.

- Assembling the ZEN
- Connecting or disconnecting any cables or wiring
- Attaching or removing the Memory Cassette
- Attaching or removing the Battery Unit

2. If the power supply is interrupted for 2 days or more (at $25^{\circ} \mathrm{C}$), the internal capacitor will discharge and internal bit status and the contents of PV areas will be lost or corrupted and dates and times will be reset. When restarting operation after the power supply has been interrupted for an extended period of time, check the system in advance to confirm that no errors will occur.

Handling

1. Connect connectors only after confirming that the direction or polarity is correct.
2. Failures could result if dust or dirt enters the ZEN. Always connect the connector cover to the computer connector whenever it is not being used.
3. Do not remove the label from the left side of the CPU Unit if a Battery Unit is not mounted.

Other

1. The execution of the ladder program in the ZEN is different from that for other PLCs. Refer to Appendix B Ladder Program Execution when writing the ladder program.
2. Abide by all local ordinances and regulations when disposing of the ZEN.

Conformance to EC Directives

Applicable Directives

- EMC Directives
- Low Voltage Directive

Concepts

EMC Directives

OMRON devices that comply with EC Directives also conform to the related EMC standards so that they can be more easily built into other devices or the overall machine. The actual products have been checked for conformity to EMC standards. The ZEN complies with IEC/EN61131-2 clause 8. Whether the products conform to the standards in the system used by the customer, however, must be checked by the customer.
EMC-related performance of the OMRON devices that comply with EC Directives will vary depending on the configuration, wiring, and other conditions of the equipment or control panel on which the OMRON devices are installed. The customer must, therefore, perform the final check to confirm that devices and the overall machine conform to EMC standards.

Low Voltage Directive

Always ensure that devices operating at voltages of 50 to 1,000 VAC and 75 to 1,500 VDC meet the required safety standards. The ZEN complies with IEC/EN61131-2 clause 11.

Conformance to EC Directives

The ZEN complies with EC Directives. To ensure that the machine or device in which the ZEN is used complies with EC Directives, the ZEN must be installed as follows:

1. The ZEN is an open-structure device and it must be installed within a control panel.
2. You must use reinforced insulation or double insulation for the DC power supplies used for the communications power supply and I/O power supplies.
3. ZEN models complying with EC Directives also conform to the Common Emission Standard (IEC/EN61131-2 clause 8). Radiated emission characteristics (10-m regulations) may vary depending on the configuration of the control panel used, other devices connected to the control panel, wiring, and other conditions. You must therefore confirm that the overall machine or equipment complies with EC Directives.

Relay Output Noise Reduction Methods

The ZEN conforms to EN 61131-2 of the EMC Directives. However, noise generated by relay output switching may not satisfy these Standards. In such a case, a noise filter must be connected to the load side or other appropriate countermeasures must be provided external to the ZEN.
Countermeasures taken to satisfy the standards vary depending on the devices on the load side, wiring, configuration of machines, etc. Following are examples of countermeasures for reducing the generated noise.

Countermeasures

(Refer to EN61131-2 for more details.)

- Countermeasures are not required if the frequency of load switching for the whole system with the ZEN included is less than 5 times per minute.
- Countermeasures are required if the frequency of load switching for the whole system with the ZEN included is 5 times per minute or higher.

Countermeasure Examples

When switching an inductive load, connect an surge protector, diodes, etc., in parallel with the load or contact as shown below.

Circuit	Current		Characteristic	Required element
	AC	DC		
CR method	Yes	Yes	If the load is a relay or solenoid, there is a time lag between the moment the circuit is opened and the moment the load is reset. If the supply voltage is 12 to 48 V , insert the surge protector in parallel with the load. If the supply voltage is 100 to 200 V , insert the surge protector between the contacts.	The capacitance of the capacitor must be 1 to $0.5 \mu \mathrm{~F}$ per contact current of 1 A and resistance of the resistor must be 0.5 to 1Ω per contact voltage of 1 V . These values, however, vary with the load and the characteristics of the relay. Decide these values from experiments, and take into consideration that the capacitance suppresses spark discharge when the contacts are separated and the resistance limits the current that flows into the load when the circuit is closed again. The dielectric strength of the capacitor must be 200 to 300 V . If the circuit is an AC circuit, use a capacitor with no polarity.

Circuit	Current		Characteristic	Required element
	AC	DC		
Diode method	No	Yes	The diode connected in parallel with the load changes energy accumulated by the coil into a current, which then flows into the coil so that the current will be converted into Joule heat by the resistance of the inductive load. This time lag, between the moment the circuit is opened and the moment the load is reset, caused by this method is longer than that caused by the CR method.	The reversed dielectric strength value of the diode must be at least 10 times as large as the circuit voltage value. The forward current of the diode must be the same as or larger than the load current. The reversed dielectric strength value of the diode may be two to three times larger than the supply voltage if the surge protector is applied to electronic circuits with low circuit voltages.
Varistor method	Yes	Yes	The varistor method prevents the imposition of high voltage between the contacts by using the constant voltage characteristic of the varistor. There is time lag between the moment the circuit is opened and the moment the load is reset. If the supply voltage is 12 to 48 V , insert the varistor in parallel with the load. If the supply voltage is 100 to 200 V , insert the varistor between the contacts.	---

This section gives an outline of the ZEN, including example applications, the system configurations and basic operations.

1-1 Outline 2
1-2 Features and Models 8
1-2-1 Features and System Configuration 8
1-2-2 List of Models 9
1-3 Nomenclature and Basic Operation 11
1-3-1 Nomenclature 11
1-3-2 Screen Transitions 13
1-3-3 Basic Operation 16
1-4 Memory Areas 21
1-5 Allocating I/O Bit Numbers 24
1-6 Preparations for Operation 25

1-1 Outline

Economical, Small-scale Automatic Control

One CPU Unit provides 6 inputs and 4 outputs.

Water-supply facilities in apartments, lighting control in offices.

Easy Operation with an Inexpensive Controller

Ladder programming is possible directly from the CPU Unit. With Memory Cassettes (optional), ladder programs can be easily copied.

(4) (도 다 지

Smaller Control Panels

The ZEN is very small at $90 \times 70 \times 56 \mathrm{~mm}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$ and mounts essentially anywhere.

Less Assembly and Wiring Time Required for Control Panels

Simple one-touch DIN Track mounting. Built-in timers and counters so only power supply and I/O circuit wiring required.
Solid wires can be easily connected using only a screwdriver.
Refer to page 29.

Power Failure Countermeasures

EEPROM backs up the program and system settings data when no power is supplied to the ZEN.
Use a Battery Unit (optional) to back up work bits, holding timers, counters, and date/time data.
Refer to page 96.

Easy Saving and Copying of Programs

Use an optional Memory Cassette to easily save and copy programs.
Refer to page 97.

Programming and Monitoring from a Personal Computer

Windows-based ZEN Support Software is available and provides a complete simulation function.
Refer to page 99.
ZEN Support
Software (CD-ROM)

Greater Switching Capacity

The output contacts have 8-A switching capacity (250 VAC). All contacts are independent.
Refer to page 38.

AC Inputs

For CPU Units with AC power supply inputs, 100 to 240 VAC can be directly connected.
Refer to page 32.
100 to 240 VAC

Easy Program Design

There are 3 different operations that can be set for bit outputs. Selfholding bits also can be easily programmed.
Refer to page 50.

Complicated Timers without Additional Programming

Any of the 16 timers support 5 types of operation and 3 timing ranges.
There are also 8 built-in holding timers that hold data during power interruptions.

Refer to page 60.

Incremental and Decremental Counters

There are 16 built-in counters that can be switched between incrementing and decrementing.
Use Comparators to enable programming multiple outputs from a counter.

Counters: Refer to page 64.
Comparators: Refer to page 77.

Control number of cars entering and leaving a car park.

Season- or Day-dependent Operating Times

CPU Units with built-in calendar and clock functions have 16 weekly timers and 16 calendar timers. Seasonal control is possible using calendar timers and day/time control is possible with weekly timers.
Weekly timers: Refer to page 67.
Calendar timers: Refer to page 72.

For gardens, parks, and recreational ponds.

Direct Analog Inputs

CPU Units with DC power supply inputs have 2 analog input points (0 to 10 V) and 4 analog comparators.

Refer to page 74.

Temperature control for hot houses and tanks. Prevent freezing of swimming pools.

Easier Maintenance

Use the display function in CPU Units to display user-specified messages, the date, time, or other data. Button switches can also be used as input contacts. Applications include usage as a simple display operation panel.
Refer to page 82.

Longer Backlight for Dark Situations

The automatic cutout time for the backlight for CPU Units can be set to 2,10 , or 30 minutes, or set to operate continuously. With the display function, the backlight can also be set to turn ON when a message is displayed.
Refer to page 92.

Prevent Chattering and Noise-related Malfunctions

Set the input filters to extend the filter timer and prevent malfunctions.
Refer to page 90.

Exporting Systems Overseas

Display for CPU Units is available in 6 languages. A Daylight Saving Time (DST) function also supported.
Changing display language: Refer to page 43. Daylight Saving Time (DST) settings: Refer to page 93.

Programming Security

Programs can be protected by setting a password.
Refer to page 88.

(3)(9(5)(4)

1-2 Features and Models

1-2-1 Features and System Configuration

The ZEN is small but has a wide range of functions and is easy to use. The ZEN facilitates small-scale automatic control.

- Simple button-operated programming.
- Highly visible, backlit LCD.
- Adjustable automatic cutout time for the backlight.
- Six-language display.
- Display function for user-specified messages (4 lines x 12 characters), time, or timer, counter, or analog-converted value displays.
- Button switches allowing operation buttons to be used as input contacts.
- Built-in weekly and calendar timers to allow simple seasonal, daily, or time-based operation.
- Both 100 to 240 -VAC and 12 to 24 -VDC power supply models available.
- Built-in analog comparator for temperature control and other analog applications (provided on CPU Units with DC power supply inputs, two analog inputs 0 to 10 V).
- Input filter settings to prevent noise-related malfunctions for CPU Units.
- Program and settings data backed up on built-in EEPROM.
- Programming using ladder diagrams.
- Password function to protect programs.

Work bits, holding timer data, counter data, and date/time data will be backed up during long-term
power supply interruptions if a Battery Unit (optional) is mounted.
ZEN-BAT01 Battery Unit

CPU Unit

ZEN-ME01 Memory Cassette

Programs can be saved and copied by using a Memory Cassette (optional).

Personal computer connecting cable

ZEN-SOFT01-V4 ZEN Support
Software

Programs can be created, edited, saved, and printed, and operation can be simulated using the ZEN
Support Software (optional).

1-2-2 List of Models

CPU Units with 10 I/O Points

Shape		Power supply/ input voltage	Inputs	Outputs		Analog inputs	Model number
With display and operation	Economy type (Expansion	$\begin{aligned} & 100 \text { to } \\ & 240 \text { VAC, } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	6 inputs	Relays	4 outputs	No	ZEN-10C3AR-A-V2
buttons 	I/O Units cannot be connected)	12 to 24 VDC				Yes	ZEN-10C3DR-D-V2

Note Refer to Input Specifications on page 108 for input specifications.

Power Supply Unit

Name and appearance	Specifications		Model number
Switching Power supply	Input voltage:	100 to 240 VAC	ZEN-PA03024
Unit	Output voltage: 24 VDC		
	Output capacity: 1.3 A		
Capacity:	30 W		

Programming Device

Name and appearance	Functions	Model number
ZEN Support Software	Runs on Windows 95, 98, ME, 2000, XP, or NT4.0 Service Pack 3 (CD-ROM) Used for offline programming, all parameter settings, program transfers, and printing.	ZEN-SOFT01-V4
Personal Computer Connecting Cable	Connects the computer and ZEN when the ZEN Support Software is used. (Cable length: 2 m)	ZEN-CIF01

Optional Products

Name and appearance	Functions	Model number
Memory Cassette	EEP-ROM Used to save and copy programs.	ZEN-ME01
	Uses a battery to back up programs and data. Mount a Battery Unit if the loss of calendar, clock, holding bit, holding timer, and counter present values will cause problems in systems with long power interruptions. (Battery life: 10 years minimum)	ZEN-BAT01

1-3 Nomenclature and Basic Operation

1-3-1 Nomenclature

Left Side

Battery Unit connector (Remove the seal to connect the Battery Unit.)

Front
Power supply terminals Input terminals

Right Side

Note Economy-type CPU Units do not have an Expansion Unit connector. Do not remove the Expansion Unit connector cover on these CPU Units.

Display Screen and Operation Buttons

Icon Meanings

Icon	Meaning
RUN	Displayed while in RUN mode.
ERR	Indicates an error.

Icon	Meaning
$\boldsymbol{\Delta}$	Displayed when there is a higher-level menu or ladder program line than the one currently displayed.
$\boldsymbol{\nabla}$	Displayed when there is a lower-level menu or ladder program line than the one currently displayed.
O-	Displayed when a password has been set.

Operation Button Names and Operations

Button	Function			
	Menus	Writing ladder program	Setting parameters	Button switch (See page 85.)
$\frac{\mathrm{DEL} 6}{\mathrm{DEL}}$	---	Deletes inputs, outputs, connection lines, and blank lines.	---	B6 ON
$\begin{aligned} & \hline \text { ALT } 7 \\ & \text { ALT } \end{aligned}$	---	Switches between normally open and normally closed conditions. Changes to connection line write mode. Inserts a line.	---	B7 ON
	Moves the cursor up and down.	Moves the cursor up and down. Selects bit types and functions.	Moves the cursor up and down. Changes numerals and parameters.	B5 ON
2 Down				B2 ON
(13) Left	---	Moves the cursor right and left.	Moves the cursor right and left.	B3 ON
4 Right				B4 ON
$\begin{array}{\|l\|} \mathrm{ESC}_{0} \\ \mathrm{ESC} \end{array}$	Returns to the previous screen.	Cancels the setting and returns to the previous operation.	Cancels the setting and returns to the previous operation.	B0 ON
OK 1 OK	Selects the menu item at the cursor position.	Confirms the setting.	Confirms the setting.	B1 ON

1-3-2 Screen Transitions

Display Screens

Main Screen

TU: Tuesday
WE: Wednesday
TH: Thursday
FR: Friday
SA: Saturday

Menu Screen Configuration

The ON/OFF status of input bits can be checked by monitoring the ladder program.

Switches to STOP mode.
The operation status of the timers, counters, and analog comparators can be monitored and the settings changed during operation. Refer to page 19.

STOP Mode

Ladder Program Edit Screen
(Refer to page 17.)

Switches to RUN mode. Cassette is mounted.
Changes the settings for timers, counters, and analog comparators. (Refer to page 22.)
Date and Time Settings (Refer to page 44.)

Other Settings

Other settings can be made. Refer to the following page for details.

Other Submenus Setting Passwords (Refer to page 88.)

Set a password when you want to protect programs from being read. The password setting range is 0000 to 9999 .

Changing Cutout Time for Backlight (Refer to page 92.)

EACKLIGHT
2min
Set the automatic cutout time for the backlight in the LCD screen.
$2 \mathrm{~min}, 10 \mathrm{~min}, 30 \mathrm{~min}$, Always ON
Setting Input Filters (Refer to page 90.)

Set the input filters to ON or OFF for the CPU Unit or Expansion I/O Units. Set to ON when noise or chattering may affect operation.

Reading System Information (Refer to page 94.)

Read system information, such as the CPU Unit software version or the date it was created, the number of I/O points on the CPU Unit, and whether or not LCD, RTC, or analog input functions are supported.

For future expansion. Do not set.

1-3-3 Basic Operation

Menu Selection Example

Main menu display

웅

Use the Up/Down Buttons to move the cursor.

Press the OK Button to select the flashing menu. The settings will flash on a reversed display.
Settings cannot be changed during reversed display.

Press the OK Button to change from a highlighted cursor to a flashing cursor. Settings can now be changed.
Use the Up/Down Buttons to change the setting.

Use the Up Button to select GERMAN.

A confirmation message will be displayed asking if you want to change to German display.

Press the ESC Button to cancel the change and return to the previous screen.

Example Operation in the Ladder Program Edit Screen

The highlighted cursor will appear in the initial write position. During highlighted cursor display, the cursor can be moved to the input or output write positions.
Up/Down Buttons: Move the highlighted cursor up and down.
Left/Right Buttons: Move the highlighted cursor Left/Right.
Press the OK Button at the input write position to display the input default setting IO and the normally open condition symbol. "l" will flash.

- Flashing Cursor at the I Position Up/Down Buttons: Change the bit type. Right Button: Moves the flashing cursor to the right.
OK Button: Sets the bit type and moves the flashing cursor to the bit address position.
- Flashing Cursor at the 0 Position Up/Down Buttons: Change the bit address.
OK Button: Completes the writing of the bit.
- Switching between Normally Open and Normally Closed Conditions You can use the ALT Button to switch between the N.O. and N.C. conditions, regardless of the position of the flashing cursor.
When the first input has been written, the highlighted cursor moves to the next input position.

Use the above procedure to enter program input conditions in series.

When writing serial inputs, the connecting line between inputs is drawn automatically.

Press the ALT Button with the highlighted cursor in the input writing position to change the cursor to a flashing left arrow to enable connecting lines to be drawn.
Up/Down Buttons: Draw vertical connecting lines.

Left/Right Buttons: Draw horizontal connecting lines.
Press the Right Button twice to draw a line to the output bit. The cursor will change to a highlighted cursor at the output bit write position.
Press the OK Button at the output bit write position to display the default output Q0. Q will flash.

- Flashing Cursor at the Q (Bit Type) Position
Up/Down Buttons: Change the type of output
Right/Left Buttons: Move the flashing cursor.
OK Button: Sets the bit type and moves the flashing cursor to the bit address position.
- Flashing Cursor at the (Additional Output Function) Position Up/Down Buttons: Selects the additional output function
OK Button: Sets the additional output function and moves the flashing cursor to the bit address position.
- Flashing Cursor at the 0 (Bit Address) Position
Up/Down Buttons: Select the bit address OK Button: Completes the output write.
Press the OK Button to complete the bit write and to move the highlighted cursor to the first input position ON the next line.

Press the ESC Button to complete the writing of the ladder program and to return to the menu screen.

Example Parameter Settings Screen Operation

Select Parameters on menu screen.	

(1) Selecting Parameters to Display

(3)

(2) Setting and Changing Parameters

© 6

When PARAMETER is selected, the settings for bits that are being used by the ladder program are displayed.

Press the OK Button to change the highlighted cursor to a flashing cursor.

Use the Up/Down Buttons to select another timer.

When multiple parameters of the same type have been selected, use the Up/Down Buttons to scroll through the numbers.
Press the Left Button to switch to another type, move the flashing cursor to the bit type position and use the Up/Down Buttons to select the bit type.
Move the flashing cursor to the bit type position and use the Up/Down Buttons to select another bit type.

Use the Left/Right Buttons to move the highlighted cursor to the parameter to be set.

Press the OK Button to confirm the set position. The cursor will change to a flashing cursor.

Use the Up/Down Buttons to set the parameter.

Press the OK Button to confirm the setting.

Use the Left/Right or Up/Down Buttons to move the highlighted cursor to the parameter to be set.

Press the OK Button to confirm the set position. The cursor will change to a flashing cursor.

Use the Left/Right Buttons to select the digit to be set.
Use the Up/Down Buttons to change the value of each digit.
Press the OK Button to confirm the setting.

Press the ESC Button to complete the settings.

Note If the ESC Button is pressed while ladder program or parameter settings are being input, the input to that point will be canceled and the settings will return to the original settings.

1-4 Memory Areas

I/O, Work, and Internal Holding Bits

Name	Type	Bit addresses	No. of bits	Function		Ladder programs	Page
CPU Unit input bits	I	0 to 5	6	CPU Units with 10 I/O pts	Reflect the ON/OFF status of the input devices connected to the CPU Unit input terminals.	N.O./N.C. inputs	24
		0 to b	12	CPU Units with 20 I/O pts			
Button input bits	B	0 to 7	8	Turn ON when the operation buttons are pressed in RUN mode. Cannot be used for LED-type CPU Units.			85
Analog comparator bits	A	0 to 3	4	Output the comparison result for analog inputs. Can only be used for models with a 24 -VDC power supply.			74
Comparator bits	P	0 to f	16	Compare the present value of timers (T), holding timers (\#), and counters (C), and outputs the comparison result.			77
8-Digit comparator bits	G	0 to 3	4	Compare the present value of 8 -digit counters (F) with a constant and outputs the comparison result			80
CPU Unit output bits	Q	0 to 3	4	CPU Units with 10 I/O pts	Output the ON/OFF status of the output bits to the outputs devices connected to the CPU Unit.	N.O./N.C. inputs Outputs (See note.)	24
		0 to 7	8	CPU Units with 20 I/O pts			
		0 to 2	3	CPU Units with Communications			
Work bits	M	0 to f	16	Can only be used within the program. Cannot output to an external device.			-
Holding bits	H	0 to f	16	Same as for work bits however the holding bits maintain ON/OFF status when power is turned OFF.			-

Note The following additional functions can be selected for bit outputs.
Execution condition

Normal output	$[$	Turns ON or OFF according to the ON/OFF status of the execution condition.
Set/Reset	S (set)	Holds ON status after the execution condition turns ON once.
	R (reset)	Holds OFF status after the execution condition turns ON once.
Alternate	A	Alternates between ON and OFF whenever the execution condition turns ON (input latch operation).

Timers and Counters

Name	Type	Bit addresses	No. of timers/ counters	Function	Use in ladder programs	Page
Timer	T	0 to f	16	Can be switched between ON delay, OFF delay, one-shot, flashing pulse, and twin timer operation.(See note.)	N.O./N.C. condition	60
Holding timer	\#	0 to 7	8	Hold the present value during counting even if the trigger input or power supply is turned OFF. Continues the timing when the trigger input or power supply is turned ON again.		60
Counter	C	0 to f	16	Four-digit reversible counters that can be incremented and decremented.		64
8-Digit counter	F	0	1	An eight-digit reversible counter that can be incremented and decremented. CPU Units with DC power supplies support a highspeed counter up to 150 Hz .		64
Weekly timer	@	0 to f	16	Can be switched between normal operation, operation between days, and pulse output operation.		67
Calendar timer	*	0 to f	16	Can turn ON or OFF during a specified date period.		72

Timer Types

X	ON delay	Times down while the trigger input is ON and turns ON the timer bit when the set time is reached.
O	OFF delay	Turns ON the timer bit while the trigger input is ON, starts timing down when the trigger input turns OFF, and turns OFF the timer bit when the set time is reached.
O One-shot	Turns ON the timer bit for the set period when the trigger input changes from OFF to ON only.	
F	Flashing pulse	Timer bit repeatedly turns ON/OFF at set intervals while the trigger input is ON.
W	Twin	Timer bit repeatedly turns ON/OFF at set intervals while the trigger input is ON. The ON time and OFF time can be set separately.

Display Bits

Name	Type	Bit addresses	No. of bits	Function	Use in ladder programs	Page
Display	D	0 to f	16	Display user-specified character strings, times, timer present values, counter present values, or analog-converted values.	Output	82

1-5 Allocating I/O Bit Numbers

The input bit addresses 10 to 15 and output bit addresses Q0 to Q3 are always allocated to the CPU Unit.

■ CPU Units with 10 I/O Points

1-6 Preparations for Operation

Mount ZEN to Control Panels

The ZEN can be mounted to either a DIN Track or directly onto the surface of the control panel. Refer to page 28.

Connect Power Supply, Input, and Output Devices
Wire the ZEN to the power supply, input, and output devices. Refer to page 29.

Make Initial Settings

Make the settings required before programming, such as date, time, and display language. Refer to pages 43 and 44.

Write Program

Input the ladder program, including timers, counters, and other parameters. Use the ZEN Support Software when using the LED-type CPU Units (without LCD.) Refer to page 46.

Check Program Execution

Perform trial operation before starting actual operation and check that the system is operating correctly. Refer to page 55.

Save Program

Debugged programs and all parameters should be saved to a Memory Cassette or ZEN Support Software to prevent loss of the data. Refer to page 97.

Actual Operation

This section explains how to mount and wire the ZEN CPU Units.
2-1 Mounting 28
2-1-1 Installation Method 28
2-2 Wiring 29
2-2-1 External Wiring 29
2-2-2 Connectable Wires 30
2-2-3 Wiring Power Supply and Input Lines 31
2-2-4 Wiring CPU Units with AC Power Supplies 32
2-2-5 Wiring CPU Units with DC Power Supplies 34
2-2-6 Wiring Output Circuits. 38

2-1 Mounting

\triangle CAUTION

Electrical shock may occur. Do not remove the Expansion Unit connector cover.

2-1-1 Installation Method

Always mount the ZEN inside a control panel. The ZEN can either be mounted to the surface of the control panel or onto a DIN Track.

Mounting Direction

Standard (Vertical) installation
 Horizontal installation

Mounting to DIN Track

Use DIN Track with a width of 35 mm (OMRON models PFP-50N or PFP-100N).

Surface Mounting

Mounting Hole Dimensions

Unit Mounting Holes

Note: Use M4 screws for mounting.

2-2 Wiring

2-2-1 External Wiring

Do not run ZEN I/O lines in the same duct or conduit as power lines.

- Hanging Ducts

Leave at least 300 mm between the power cables and the I/O or control wiring, as shown in the following diagram.

Floor Ducts

Leave at least 200 mm between the wiring and the top of the duct, as shown in the following diagram.

Conduits

Separate the ZEN I/O lines, power and control lines, and power cables, as shown in the following diagram.

Do not run ZEN I/O lines in the same duct or conduit as power lines.

2-2-2 Connectable Wires

- A terminal block designed for solid wires is used. Use solid wires when wiring.

	Solid wires
One-line connection	0.2 to $2.5 \mathrm{~mm}^{2}$
Two-line connection	0.2 to $0.75 \mathrm{~mm}^{2}$

Note When using a 2-line connection, use wires of the same size for both lines.

- Strip the sheath back 6.5 mm .

- Twisted wires can cause shorts so never directly connect twisted wires. Always connect a straight crimp terminal if using twisted wires.
Bar terminal

	Stranded wires	Straight terminals
One-line connection	0.2 to $2.5 \mathrm{~mm}^{2}$ (Equivalent to AWG 24 to 14.)	0.25 to $2.5 \mathrm{~mm}^{2}$
Two-line connection	0.2 to $0.75 \mathrm{~mm}^{2}$ (Equivalent to AWG 24 to 18.)	0.25 to $0.75 \mathrm{~mm}^{2}$

Note When using a 2-line connection, use terminals of the same size for both lines.

- Use a flat-blade screwdriver to tighten the terminal block screws and tighten the screws to between 0.5 and $0.6 \mathrm{~N} \cdot \mathrm{~m}$.
- Recommended screwdriver: SZS0.6X3.5 or SZF1-0.6X3.5 manufactured by Phoenix Contact

2-2-3 Wiring Power Supply and Input Lines

\triangle CAUTION

Fires may occasionally occur. Tighten the terminal block screws to the specified torque (0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$) so that they do not become loose.

2-2-4 Wiring CPU Units with AC Power Supplies

■ Wiring the CPU Unit Power Supply

- To prevent voltage drops due to starting currents and inrush currents in other devices, wire the ZEN power supply circuit separately from other power circuits.
- When using more than one ZEN, to prevent voltage drops due to inrush current and circuit-breaker malfunctions, it is recommended that each one is wired separately.
- To prevent the influence of noise from power lines, twist the power lines. Wiring via a 1-to-1 isolation transformer is also effective.
- Use wires that are thick enough to allow for voltage drops and current variations within the allowable range.
- Include a circuit protector or breaker installed separately from other circuits in the power supply circuit for the ZEN.

|| Precautions for Correct Use ||

- Input circuit commons are internally connected to the N terminal of the power circuit for CPU Units with AC power supplies. Wire the L terminal to the power supply of the input device.

Connecting 2-Wire AC Sensors

A two-wire sensor cannot be connected directly to the AC input. To connect a two-wire sensor, attach an external bleeder resistance in the way shown below.

- Example: Connecting to a CPU Unit or Expansion I/O Unit

a) Use a resistance that satisfies both of the following conditions.

$$
\begin{aligned}
& \mathrm{R} 1(\Omega) \leq \frac{\text { Max. OFF-voltage for AC input (25 VAC) }}{\text { Sensor's max. leakage current (A) }} \\
& \mathrm{R} 2(\Omega) \leq \frac{\text { Voltage supplied to sensor (V) }}{\text { Min. current for which the }} \\
& \begin{array}{l}
\text { sensor's OFF residual voltage is } \\
\text { less than 25 V (A) }
\end{array}
\end{aligned}
$$

b) Because of heat generation, use a resistor with at least the following wattage.

$$
\mathrm{P}(\mathrm{~W}) \geq \frac{\begin{array}{c}
(\text { Voltage supplied } \\
\text { to sensor })^{2}
\end{array}}{\text { Resistance value }} \times 3 \text { (allowance factor) }
$$

Note Calculating the Bleeder Resistance when Connecting an OMRON E2E-X10Y 2-Wire AC Sensor
This calculation is based on an input voltage of 85 to 110 V AC. The Sensor's maximum leakage current is 0.0017 A.
The minimum current when the Sensor's OFF residual voltage is 25 V max. is 0.005 A .
R1 $(\Omega) \leq 25 \vee \mathrm{AC} / 0.0017 \mathrm{~A}=14,706 \Omega$
R2 $(\Omega) \leq 85 \mathrm{~V} \mathrm{AC} / 0.005 \mathrm{~A}=17,000 \Omega$
The bleeder resistor must thus be $14 \mathrm{k} \Omega$.
The Sensor output current in this case would be $100 \mathrm{VAC} / 14 \mathrm{k} \Omega$, or 7 mA . This satisfies the Sensor's control output range of 5 to 300 mA .
$\mathrm{P}(\mathrm{W}) \geq\left(110 \mathrm{~V} \mathrm{AC}^{2}\right) / 14 \mathrm{k} \Omega \times 3=2.59 \mathrm{~W}$
Thus, a bleeder resistor with a capacity of 3 W must be used.

2-2-5 Wiring CPU Units with DC Power Supplies

Power Supply and Input Circuits

Connecting a Negative Common (PNP Connection)

Connecting Analog Input Devices to Input Terminals I4 and I5

Connecting Positive Common (NPN Connection)

|| Precautions for Correct Use ||

- Apply the power supply voltage through a relay or switch in such a way that the voltage reaches the rated value within 10 s . If the voltage is applied gradually, the power may not be reset or unstable output operations may result.
- Connect the COM terminals before turning ON the power supply. Not connecting the COM terminals or connecting them after turning ON the power supply may cause malfunctions.

Connecting Input Devices to the CPU Unit

The following table shows how to connect various input devices.
Device

Note Do not use the following wiring with voltage-output devices:

Leakage Current from Input Devices

A leakage current can cause false inputs when using 2-wire DC sensors (proximity switches or photoelectric switches) or limit switches with LEDs. False inputs won't occur if the leakage current is less than 0.8 mA . If the leakage current exceeds this value, insert a bleeder resistor in the circuit to reduce the input impedance, as shown in the following diagram.

Note The OFF voltage of the analog/digital input terminals on the CPU Unit is 30 V DC. A 2-wire DC sensor can not be connected.

I: Device's leakage current (mA)
R: Bleeder resistance ($k \Omega$)
W: Bleeder resistor's power rating (W)

Lc: ZEN's input impedance (k Ω)
I_{C} : ZEN's input current (mA)

$$
R=\frac{L_{C} \times 5.0}{I \times L_{C}-5.0} k \Omega \max . \quad W=\frac{2.3}{R} W \text { min. }
$$

The equations above were derived from the following equations:

$$
\begin{aligned}
& \mathrm{I} \times \frac{\mathrm{R} \times \frac{\text { Input voltage (24) }}{\text { Input Current }\left(\mathrm{I}_{\mathrm{C}}\right)}}{\mathrm{R}+\frac{\text { Input voltage }(24)}{\text { Input Current }(\mathrm{IC})}} \leq \text { OFF voltage }\left(\mathrm{E}_{\mathrm{c}:} 5.0\right) \\
& \mathrm{W} \geq \frac{\text { Input voltage }(24)}{\mathrm{R}} \times \text { Input voltage }(24) \times \text { tolerance }(4)
\end{aligned}
$$

Refer to page 108 Input Specifications for details on the values L_{C}, I_{C}, and E_{C}. The input impedance, input current, and OFF voltage may vary depending on the input being used.

Inductive Loads

When connecting an inductive load to an input, connect a diode in parallel with the load. The diode should satisfy the following requirements:

1,2,3... 1. Peak reverse-breakdown voltage must be at least 3 times the load voltage.
2. Average rectified current must be 1 A .

2-2-6 Wiring Output Circuits

All 4 outputs in the relay output circuits have independent contacts. There are no restrictions on polarity.

Output Wiring Precautions

(1) Output Short Circuit Protection

We recommend adding a protective fuse to all output circuits to protect the output elements and PCBs from burning if the load connected to the output terminal short-circuits.

(2) Inductive Loads

When connecting an inductive load to an input, connect a surge protector or diode in parallel with the load.
The surge protector's components should have the following ratings:

The diode should satisfy the following requirements:
Peak reverse-breakdown voltage must be at least 3 times the load voltage.
Average rectified current must be 1 A .

(3) Inrush Current Considerations

When switching a load with a high inrush current in the ZEN relay output model, such as an incandescent lamp, suppress the inrush current as shown below.

Countermeasure 1

Providing a dark current of approx. one-third of the rated value through an incandescent lamp

Providing a limiting resistor

Programming and Operating Methods

Abstract

This section explains how to create and edit ladder programs and how to use the timers, counters, comparators, display function and buttons switches.

3-1 Selecting Display Language 43
3-2 Setting the Date and Time 44
3-3 Creating Ladder Programs 46
3-3-1 I/O Wiring and Internal Operation 46
3-3-2 Clearing Programs 46
3-3-3 Writing Ladder Programs 47
3-4 Confirming Ladder Program Operation 55
3-5 Correcting Ladder Programs 57
3-5-1 Changing Inputs 57
3-5-2 Changing Additional Bit Output Functions 57
3-5-3 Deleting Inputs, Outputs, and Connection Lines 58
3-5-4 Inserting Lines 58
3-5-5 Deleting Blank Lines 59
3-6 Using Timers (T) and Holding Timers (\#) 60
3-6-1 Settings in the Ladder Program Edit Screen. 62
3-6-2 Settings in the Parameter Settings Screen 62
3-6-3 Parameter Monitor Screen Display 63
3-7 Using Counters (C) and the 8-Digit Counter (F) 64
3-7-1 Settings in the Ladder Program Edit Screen. 64
3-7-2 Settings in the Parameter Settings Screen 65
3-7-3 Parameter Monitor Screen Display 66
3-8 Using Weekly Timers (@) 67
3-8-1 Settings in the Ladder Program Edit Screen. 68
3-8-2 Settings in the Parameter Settings Screen 69
3-8-3 Parameter Monitor Screen Display 71
3-9 Using Calendar Timers (*) 72
3-9-1 Settings in the Ladder Program Edit Screen. 72
3-9-2 Settings in the Parameter Settings Screen 72
3-9-3 Parameter Monitor Screen Display 73
3-10 Analog Inputs (Analog Comparators (A)) 74
3-10-1 Settings in the Ladder Program Edit Screen. 75
3-10-2 Settings in the Parameter Settings Screen 76
3-10-3 Parameter Monitor Screen Display 76
3-11 Comparing Timer/Counter Present Values Using Comparators (P) 77
3-11-1 Settings in the Ladder Program Edit Screen. 77
3-11-2 Settings in the Parameter Settings Screen 78
3-11-3 Parameter Monitor Screen Display 79
3-12 Comparing the 8-Digit Counter (F) Present Value Using 8-Digit Comparators (G) 80
3-12-1 Settings in the Ladder Program Edit Screen. 80
3-12-2 Settings in the Parameter Settings Screen 80
3-12-3 Parameter Monitor Screen Display 81
3-13 Displaying Messages (Display Bits (D)) 82
3-13-1 Settings in the Ladder Program Edit Screen 82
3-13-2 Settings in the Parameter Settings Screen 83
3-14 Using Button Input Bits (B) 85

3-1 Selecting Display Language

There is a choice of 6 display languages. The default language is English.

Operation to Select German

(3) (3) 3

Press the Down Button 4 times to move the cursor to "LANGUAGE".

Press the OK Button to display the current language ("ENGLISH"). The final " H " will be highlighted and flashing.

Press the OK Button to make the whole word "ENGLISH" flash. A different language can now be selected.

Use the Up/Down Buttons to select a language.
(3) SPANISH

ITALIAN
FRENCH
GERMAN
JAPANESE
(5) ENGLISH

Press the Up Button to select GERMAN.

Press the OK Button to display a confirmation message.

Press the OK Button to complete the setting. The display language will change to German.

3-2 Setting the Date and Time

The date and time are not set when the product is shipped. The date and time must be set before the ZEN can be used.

OK 1

OK 1

Press the OK Button to display the submenu for clock settings. Select SET CLOCK from the submenu.

Press the OK Button to display the current date and time settings. The right digit of the date will be highlighted and flashing.

Current time: hh:mm (day) Current date: yy/mm/dd

Press the OK Button to change from a highlighted cursor to a flashing cursor and enable data to be changed.

Days of the week SU: Sunday
MO: Monday
TU: Tuesday
WE: Wednesday
TH: Thursday
FR: Friday
SA: Saturday

Set the date and time.
Use the Up/Down Buttons to change the setting.
Use the Left/Right Buttons to move the cursor.
The day will automatically change when the date is set.
Press the OK Button to display a confirmation message.

Press the OK Button to confirm and complete the setting.

|| Precautions for Correct Use ||

If the power supply is turned OFF for two days or more at $25^{\circ} \mathrm{C}$, the date and time will return to the default setting (00/1/1; 00:00 (SA)). This may cause programs using calendar timers or weekly timers to
malfunction. Therefore, mount a Battery Unit for the system if the power supply is expected to be interrupted for an extended time.
(Refer to page 96.)
Note 1. The year can be set between 2000 and 2099.
2. If the Daylight Saving Time (DST) is set, " S " will appear at the top right of the time setting screen during the Daylight Saving Time (DST) period. (Refer to page 93.)

	"S" displayed during the Daylight Saving Time (DST) period

3-3 Creating Ladder Programs

Example Program

This section explains how to write ladder programs, based on a simple circuit example.

3-3-1 I/O Wiring and Internal Operation

3-3-2 Clearing Programs

Clear the ladder program before starting to write a program. By performing the Delete Program operation, the ladder program will be completely cleared. The display language, date/time settings, and all other settings will not be initialized.

STOP mode display

OK 1

2

Press the OK Button to switch to the Menu Screen and select PROGRAM.

Select DELETE PROG.

If a password has been set, a Password Input Screen will be displayed. Input the password.
Press the OK Button to display a confirmation message, and then select YES.

When the Delete Program operation has been completed, the display will return to the original screen.

3-3-3 Writing Ladder Programs

```
STOP mode display
```


Press the OK Button to switch to the Menu Screen and select PROGRAM.

```
DELETE PROG
```

Select EDIT PROG.

Press the OK Button to display a confirmation message, and then select $Y E S$.
Press the OK Button to switch to the Ladder
Program Edit Screen.
Indicates the line number in the ladder
program at the cursor position (line 0 in this
example.)
Cursor flashing in a reversed state.

Operations in the Ladder Program Edit Screen

Two lines of circuits can be displayed at one time on the Ladder Program Edit Screen.
Up to 96 lines can be written.
Up to 3 inputs and 1 output can be written per line.

- Example ladder diagram

Bit type
Bit address

Displayed when there are more lines. Use the Down Button to display the lines.

Displayed when there are more lines. Use the Up Button to display the lines.
N.C. input
N.O. input

- Positions for Writing Inputs, Outputs, and Connection Lines

3-3-3-1 Writing an Input for 10

Press the OK Button to display the initial write setting (N.O input IO) and move the flashing cursor to the bit type I position. Use the Up/Down Buttons to select the bit type. Use the Right Button to move the flashing cursor to the 0 position and then use the Up/ Down Buttons to select the bit address.

Press the OK Button twice to complete the write operation for input IO. The highlighted cursor will move the next input position.

3-3-3-2 Writing Serial Input I1

Press the OK Button to display the N.O. input and input 10 again.

Press the ALT Button to switch to a N.C. input.
(Press the ALT Button again to switch back to a N.O. input.)

Use the Right Button to move the flashing cursor to the bit address position and use the Up Button to change the bit address to 1 .

Press the OK Button to move the highlighted cursor to the next input position. A connection will automatically be created between input 10 and the next input.

Writing Inputs

Input Symbol Configuration

- Memory Areas

Symbol	Name	Bit type and number
I	CPU Unit input bits	I0 to I5 (6 points)
Q	CPU Unit output bits	Q0 to Q3 (4 points)
M	Work bits	M0 to Mf (16 points)
H	Holding bits	H0 to Hf (16 points)
B	Button switches	B0 to B7 (8 points)

- Timers, Counters, and Analog Comparators

Symbol	Name	Bit type and number
T	Timers	T0 to Tf (16 timers)
$\#$	Holding timers	\#0 to \#7 (8 timers)
$@$	Weekly timers	@0 to @f (16 timers)
$*$	Calendar timers	$* 0$ to $* f$ (16 timers)
C	Counters	C0 to Cf (16 counters)
F	8-Digit counter	F0 (1 counter)
A	Analog comparators	A0 to A3 (4 comparators) (See note.)
P	Comparators	P0 to Pf (16 comparators)
G	8-Digit comparators	G0 to G3 (4 comparators)

Note Can be used only with CPU Units with DC power supplies (PNP connection).

Press the ALT Button to enable drawing a connection line. The left arrow cursor will flash.

Press the Right Button to draw a connection line to the output.

Writing Outputs

Output Configuration

Memory Areas

Symbol	Name	Bit type and number
Q	CPU Unit output bits	Q0 to Q3 (4 outputs)
M	Work bits	M0 to Mf (16 bits)
H	Holding bits	H0 to Hf (16 bits)

Additional Functions for Output Bits

Symbol	Name
$[$	Normal operation
S	Set operation
R	Reset operation
A	Alternate operation

Additional Functions for Bit Outputs

[: Normal output	S: Set	R: Reset	A: Alternate
If-------[00	It 11	It-------R02	IIS------A0S
$10 \stackrel{\square}{\square}$	$11 \xrightarrow[\text { Q1 }]{11 \xrightarrow{\square}}$	$\begin{aligned} & 12 \Longrightarrow \text { Q2 } \\ & \text { Q2 } \end{aligned}$	в
Q0 turns ON and OFF when execution condition 10 turns ON and OFF.	Q1 turns ON and stays ON when execution condition I1 turns ON once.	Q2 is forced OFF when execution condition I2 turns ON.	Q3 alternates between On and OFF each time execution condition I3 turns ON.

Timers, Holding Timers, Counters, and Display Output Configurations

\square Timers, Counters, and Display Bits

Symbol	Name	Type and number	Output type
T	Timer	T0 to Tf (16 timers)	T: Trigger
\#	Holding timer	\#0 to \#7 (8 timers)	R: Reset
C	Counter	C0 to Cf (16 counters)	C: Count
F	8-Digit counter	f0 (1 counter)	D: Count direction R: Reset
D	Display bit	D0 to Df (16 bits)	D

3-3-3-3 Writing an Output to Q0

(1)

Press the Right Button again to draw a line to the output and move the highlighted cursor to the output write position.

Press the OK Button to display the initial value for the output (normal output/Q0) and move the flashing cursor to the bit type Q position.

Use the Up/Down Buttons to select the bit type. Use the Right/Left Buttons to move the flashing cursor and use the Up/Down Buttons to select additional functions or select the bit address.

Press the OK Button twice to complete writing output Q0. The highlighted cursor will move to the input at the beginning of the next line.

3-3-3-4 Writing a Parallel Input for Q0

항

Press the OK Button to display input 10 and move the flashing cursor to the bit type I position.

Press the Up Button to select \boldsymbol{Q} (a CPU Unit output bit).

Press the OK Button twice to complete writing the parallel input for Q0. The highlighted cursor will move to the next input.

3-3-3-5 Drawing Connection Lines for OR Circuits

Drawing Connection Lines

둥

Press the ALT Button when the highlighted cursor is at the input write position to change the cursor to a left flashing arrow and enable connection lines to be drawn. Move the left arrow the position for drawing the connection line and press the Up, Down, Left, and Right Buttons to draw connection lines vertically and horizontally.
It will not be possible to draw connection lines, if a written input/output bit has been reached, if the beginning or end of the line has been reached, or if the OK and ESC Buttons are pressed.
Press the ALT Button to enable drawing connection lines.

Press the Up Button to simultaneously draw a connection line both vertically and horizontally. The cross
(+) indicates an intersection.

Press the OK Button to complete writing the connection line and change to a highlighted flashing cursor.

Press the ESC Button to complete the write operation.
Press the ESC Button again to return to the Menu Screen.

|| Precautions for Correct Use ||

Always press the ESC Button and return to the Menu Screen after creating a program. If you do not press the ESC Button and return to the Menu Screen before turning OFF the power, the program and settings will be deleted

- Do not input a program where the connection lines double back on themselves. The program will not operate properly if such lines are drawn.

- Do not use the same output bit address for more than one output from the program. The resulting operation may not be as expected.

Here, the final status of Q0 will be controlled by 11 , not by 10 .

3-4 Confirming Ladder Program Operation

Always check the ladder program operation before using the ZEN.

|| Precautions for Safe Use ||

- Before turning ON the power, check that all wiring has been performed correctly.
- For systems with loads connected to the outputs that may cause serious injury or damage to equipment if operation is incorrect, remove the output wiring before performing trial operation.
- Always ensure safety in the vicinity before switching the operating mode (RUN/STOP).

Procedure for Checking Operation

Checks Before Turning ON the Power

1. Check that the ZEN is mounted and wired correctly.
2. Check that the operation of the ZEN will not have a negative impact on the system. Check for any dangers.
3. Turn ON the power supply to the ZEN. Switch to RUN mode while the ZEN is stopped.

Operation Checks

4. Turn each input ON and OFF and check that the program is operating correctly.
5. Adjust any problems.

Method for Checking Operation

- Check the operation by the flashing input and output displays on the Main Screen.
- Check the operation by using the Ladder Program Monitor.
- Connect the ZEN Support Software and check operation using the monitor function. Refer to the operation manual for the ZEN Support Software.

Checking Operation

Changing Operating Mode

Press the OK Button to display the Menu Screen and press the Down Button to move the flashing cursor to RUN.

Press the OK Button to switch from STOP mode to RUN mode.

3-5 Correcting Ladder Programs

3-5-1 Changing Inputs

Move the
highlighted cursor to the input to be changed.

(1) 둥

Change contact Q0 to M1.

Press the OK Button to change the highlighted cursor to a flashing cursor and move the flashing cursor to the bit type position.
Use the Up/Down Buttons to select \boldsymbol{M}.
Press the Right Button to move the flashing cursor to the bit address position. Use the Up/Down Buttons to change the bit address from 0 to 1 .
Press the OK Button to complete the setting change.

3-5-2 Changing Additional Bit Output Functions

Move the

highlighted cursor to the output to be changed.

OK 1

Press the OK Button to change the highlighted cursor to a flashing cursor.

Change the additional function for the input for Q0 to S (Set).

Press the Left Button to move the flashing cursor to the additional function position.
Press the Up Button twice to change the additional function from [to S .
Press the OK Button to complete the change.

3-5-3 Deleting Inputs, Outputs, and Connection Lines

Move the highlighted cursor to the position of the input, output, or connection line to be deleted and press the DEL Button.

Example: Deleting Serial Input M3

Press the DEL Button to delete the input and the related connecting lines at the same time.

Example: Deleting Vertical Connecting Lines

\qquad

Move the highlighted cursor to the input position to the right of the vertical line to be deleted. Press the ALT Button to enable drawing connection lines. The highlighted cursor will change to a left arrow cursor.
Press the DEL Button to delete the vertical connection line.

3-5-4 Inserting Lines

- To insert a blank line, move the highlighted cursor to the beginning of the line where the blank line is to be inserted and press the ALT Button.

A circuit will be added here.

Press the ALT Button to insert one blank line.

- To add OR programming, inputs can be added between parallel inputs. Move the highlighted cursor to the beginning of the line where the input is to be inserted.

An input will be added here.

Press the ALT Button to reserve a 1 -line space between the parallel inputs.
The vertical connection lines will be automatically extended.

Note A blank line cannot be inserted if an input or connection line is written in the last line (the 96th line).

3-5-5 Deleting Blank Lines

Move the highlighted cursor to the beginning of the line to be deleted.

To delete a blank line, move the highlighted cursor to the input position at the beginning of the line to be deleted and press the DEL Button.

This line will be deleted.

Press the DEL Button to delete one blank line. All following lines will move up one.

Note A line must be blank to be deleted, i.e., lines containing inputs and outputs cannot be deleted.

3-6 Using Timers (T) and Holding Timers (\#)

The ZEN has 16 built-in timers and 8 built-in holding timers.

Timers	The present value being timed will be reset when the timer switches from RUN mode to STOP mode or the power is turned OFF. There are five uses of the timer available, depending on the additional function selection.
Holding timers	The present value being timed is held even when the timer switches from RUN mode to STOP mode or the power is turned OFF. The time will continue when the trigger input turns ON again. The ON status of the timer bit is also held when the timer times out. Only ON-delay holding timers are supported.

Timer Usage and Operation

X: ON delay timer	
	Turns ON after a set interval after the trigger input has turned ON. Basic Operation $\begin{array}{\|ll} \text { Trigger input } & \square \\ \text { Output } & \\ \hline \end{array}$ Main Applications Time lag operations
■: OFF delay timer	
	Stays ON while the trigger input is ON and turns OFF after a set interval after the trigger input has turned OFF. Basic Operation Trigger input Main Applications Useful for timing lighting and ventilating fans.

Holding Timer Usage and Operation

| X : ON delay timer only |
| :--- | :--- | :--- |
| Triger input |
| Reset input |
| Setting |
| Present |
| value |

3-6-1 Settings in the Ladder Program Edit Screen

Timer triggers, reset outputs, and timer inputs are drawn on the Ladder Program Edit Screen. Settings are made on the Parameter Settings Screen.

Timer address	Timers: T0 to Tf (16 timers)/ Holding Timers: \#0 to \#7 (8 timers)	
Trigger input	T (TRG)	Controls the timer trigger output. Triggers the timer when the trigger input turns ON.
Reset input	R (RES)	Controls the timer reset output. When the reset input turns ON, the present value is reset to 0 and the timer bit turns OFF. Trigger inputs are not accepted while the reset input is ON.
Timer bit	Turns ON according to the timer type.	

3-6-2 Settings in the Parameter Settings Screen

All Timers Except Twin Timers (X, ■, O, F)

Twin Timers (W)

Timer Types

X	ON delay
\mathbf{Q}	OFF delay
O	One-shot pulse
F	Flashing pulse
W	Twin

Time Units and Settings

S	00.01 to 99.99 s (in 0.01 -s units)
$\mathrm{M}: \mathrm{S}$	00 min 01 s to 99 min 59 s (in minutes and seconds)
$\mathrm{H}: \mathrm{M}$	00 h 01 m to 99 h 59 m (in hours and minutes)

Monitor Enabled or Disabled

A	Operating parameters can be monitored and settings changed.
D	Operating parameters cannot be monitored nor settings changed.

3-6-3 Parameter Monitor Screen Display

All Timers Except Twin Timers

Trigger input status $-\quad$ Timer present value
(O: OFF/C: ON)

Reset input status

Twin Timers

Trigger input status
(O: OFF/C: ON)

(5) (3) to switch the display.

3-7 Using Counters (C) and the 8-Digit Counter (F)

Up to 16 counters and one 8-digit counter can be used in incremental or decremental mode. The present value for counters and the status of counter bits (ON/OFF) are held even when the operating mode is changed or there is a power interruption.

Operation

Counter bits turn ON when the count value (present value) exceeds the setting (present value \geq set value). The count returns to 0 and the bits turns OFF when the reset input turns ON. Count inputs are not accepted while the reset input is ON.

3-7-1 Settings in the Ladder Program Edit Screen

Outputs for the counter input, counter direction, and counter reset are written in the Ladder Program Edit Screen. Counter input conditions can also be written. Settings are made in the Parameter Settings Screen.

Counter address	Counter C0 to Cf (16 points)	
	8-Digit Counter F0 (1 point)	
Counter input	C (CNT)	Increments (or decrements) each time the count input turns ON.
Counter direction specification input	D (DIR)	Switches between incremental and decremental counting. OFF: Incremental ON: Decremental

Reset input	R (RES)	When the reset input turns ON, the present value returns to 0 and the counter bit turns OFF. Count inputs are not accepted while the reset input is ON.
Count input	Turns ON when the counter has counted out (PV \geq SV)	

3-7-2 Settings in the Parameter Settings Screen

Counters (C)

Set value	0001 to 9999 (4 decimal digits) times	
Monitor enabled/ disabled	A	Operating parameters can be monitored and settings changed.
	D	Operating parameters cannot be monitored or settings changed.

The speed of the counter depends on whether a filter is used. Refer to page 90.

8-Digit Counter (F)

Set value	00000001 to 99999999 (4 decimal digits) times	
Counter speed	H	High speed (150 Hz, see note.) (IO for CPU Units with DC power supplies only)
	L	Low speed (Depends on whether a filter is used. Refer to page 90.)
Monitor enabled/ disabled	A	Operating parameters can be monitored and settings changed.
	D	Operating parameters cannot be monitored or settings changed.

Note Counting Speed

The maximum counting speed of the 8-digit counter is 150 Hz regardless of whether an input filter is used. The maximum ladder program capacity, however, may be less than 150 Hz . Calculate the cycle time (refer to page 114) and confirm the maximum
counting speed using the following formula. The calculation serves as a guide only, so allow a suitable margin in the actual machine.
Maximum counting speed: $1,000,000 /($ cycle time in $\mu \mathrm{s} \times 2.2$) Hz
Note Even if the calculated maximum counting speed exceeds 150 Hz using this formula, the maximum counting speed will be 150 Hz .

3-7-3 Parameter Monitor Screen Display

Counters (C)

Count input status
(O: OFF/ 0 : ON)
Counter present value

Counter direction specification input status (O: OFF/0: ON)

Reset input status
(O: OFF/0: ON)
(O: OFF/O: ON)

8-Digit Counter (F)

Note 1. To reset the counter present value and counter bit status (ON/ OFF) when at power interruptions or when the operating mode is changed, create a counter reset circuit when you first execute the program. An example is shown below.

2. If the counter input and counter direction are input simultaneously, place the output for the counter direction before the output for the counter input in the program.

11	Counter direction specification output
H-------DC0	specification output
------CC0	Output to counter input

3-8 Using Weekly Timers (@)

Any of the following three operations, which vary in the day of week, time, and output time settings, can be selected for weekly timers.

Weekly Timer Operation

	ekly ner era- on	Operation
N		Typical Timer Operation from Tuesday to Friday between 8:15 and 17:30.
		Timer Operation Extending Past Midnight

	ekly ner eraon	Operation
D		
P		

3-8-1 Settings in the Ladder Program Edit Screen

Weekly timer inputs are written in the Ladder Program Edit Screen. Settings are made in the Parameter Settings Screen.

$$
\begin{array}{|l|l}
\hline \text { Weekly timer addresses } & \text { @ } 0 \text { to @f (16 timers) } \\
\hline
\end{array}
$$

3-8-2 Settings in the Parameter Settings Screen

Normal Operation (N)

Note When the flashing cursor is on the start day, press the Right Button and then the Up/Down Buttons to set the stop day. If the stop day is not set, the timer will operate according to the set time only.

Type of operation	N	Normal
	D	Between days
	P	Pulse
Day	Start day	Sun/Mon/Tues/Wed/Thurs/Fri/Sat
	Stop day	Sun/Mon/Tues/Wed/Thurs/Fri/Sat/None
	Start time	$00: 00$ to 23:59
	Stop time	$00: 00$ to 23:59
Operating time	A	Operating parameters can be monitored and settings changed.
Monitor enabled/ disabled	D	Operating parameters cannot be monitored or settings changed.

Operation between Days (D)

Weekly timer address

Pulse Operation (P)

Relationship between Start and Stop Days and Times

Setting and operation		Setting example	Operation
Start and stop day	When start day is before stop day	MO - FR	Operates Monday to Friday every week.
	When start day is after stop day	FR - MO	Operates every Friday through to the following Monday.
	When start and stop days are the same	SU - SU	Normal and pulse operation: Operates regardless of the day of the week. Multiple-day operation: Operates every Sunday only (See note.)
	When stop day not set	SU -	Normal and pulse operation: Operates every Sunday only. Multiple-day operation: Cannot be set.
Start and stop time (normal operation)	When start time is before stop time	ON: 08:00 OFF: 17:00	Operates 8:00 to 17:00 every day.
	When start time is after stop time	ON: 21:00 OFF: 06:00	Operates 21:00 to 6:00 the next day.
	When start and stop times are the same	ON: 13:00 OFF: 13:00	Operates regardless of the time.

Note The multiple-day operation shown here is for when the start and stop days are the same (SU-SU).

1. Start time is before stop time (ON: 08:00/OFF: 17:00): Operates from 08:00 Sunday until 17:00 Sunday.
2. Start time is after stop time (ON: 21:00/OFF: 06:00): Operates from 21:00 Sunday until 06:00 the following Sunday.
3. Start and stop times are the same: Operates regardless of the time.

3-8-3 Parameter Monitor Screen Display

Normal Operation (N)

Type of operation Current day

Operation between Days (D)

Pulse Operation (P)

3-9 Using Calendar Timers (*)

Calendar timers turn ON between specified dates.

Calendar Timer Operation

Dec 31
End date
Sep 1 1

3-9-1 Settings in the Ladder Program Edit Screen

Calendar timer inputs are written in the Ladder Program Edit Screen. Settings are made in the Parameter Settings Screen.

Calendar timer address	$* 0$ to $* f(16$ timers)

3-9-2 Settings in the Parameter Settings Screen

Start date	Jan 1 to Dec 31	
Stop date (See note.)	Jan 1 to Dec 31	
Monitor enabled/ disabled	A	Operating parameters can be monitored and settings changed.
	D	Operating parameters cannot be monitored or settings changed.

Note To stop operation on August 31, set the stop date to the following day (September 1).

Relationship between Start and Stop Dates

Setting and operation		Setting example	Operation
Start and stop date settings and operation	When start date is before stop date	ON: 04/01 OFF: 09/01	Operates between 1 April and 31 August. (See note.)
	When start date is after stop date	ON: 12/26 OFF: 01/07	Operates between 26 December and 6 January the following year.
	When start and stop dates are the same.	ON: 07/26 OFF: 07/26	Operates regardless of the date.

Note To stop operation on August 31, set the stop date to the following day (September 1).

3-9-3 Parameter Monitor Screen Display

Current date

3-10 Analog Inputs (Analog Comparators (A))

Two analog voltage inputs between 0 and 10 V can be incorporated into the CPU Units with a DC power supply. 14 and I5 for CPU Units can be used as analog voltage inputs.
The analog input signal is converted to BCD (00.0 to 10.0). The results can be used with one of the comparators A0 to A3, and the 4 comparison outputs can be used as input conditions in the program.

Analog signal input: 0.0 to 10.0 V
(DC power supply type)
Analog input 1: 14
Analog input 2: 15
Note Connect the negative side to COM for analog inputs. The analog input circuit may be destroyed if the positive side is connected to COM.

Operation

- Example 1
(When comparison shows analog input $1 \geq 5.2 \mathrm{~V}$)

The analog comparator bit turns ON when the analog input voltage reaches is 5.2 V or higher.

- Example 2
(When comparison shows analog input 1 is \leq analog input 2)

Converted value

The analog comparator bit turns ON when the analog input 2 voltage is higher than the analog input 1 voltage.

|| Precautions for Correct Use ||

Do not make negative signal inputs to analog inputs. If negative signals are made, the internal elements may be damaged.

3-10-1 Settings in the Ladder Program Edit Screen

The analog comparator input is written in the Ladder Program Edit Screen. Settings are made in the Parameter Settings Screen.

- Analog comparator bit

[^0]
3-10-2 Settings in the Parameter Settings Screen

- Comparing Analog Inputs and Constants (When $14 \geq$ constant) Analog comparator - Comparison data 1 address

- Comparing Analog Inputs (When $14 \leq 15$)

Refer to page 17 for parameter setting methods.
Comparison data 1 determines the comparison pattern. When comparing to a constant, the constant is set for comparison data 2 next. The operator is specified last.

Analog comparator address		A0 to A3 (4 comparators)	
Comparison data	1	14: Analog input 1 15: Analog input 2	Comparison Patterns - Size comparison between 14 and 15 . - Size comparison between 14 and constant. - Size comparison between I5 and constant.
	2	15: Analog input 2 Constant: 00.0 to 10.5	
Operator		>=: Analog comparator bit turns ON when comparison data $1 \geq$ comparison data 2.	
		<=: Analog comparator bit turns ON when comparison data $1 \leq$ comparison data 2.	
Monitor enabled/ disabled	A	Operating parameters can be monitored and settings changed.	
	D	Operating parameters cannot be monitored or settings changed.	

3-10-3 Parameter Monitor Screen Display

- Comparing Analog Inputs and Constants (When $14 \geq$ constant)

- Analog input 1 (14) present value

Analog comparator bit status (O: OFF/- : ON)

- Comparing Analog Inputs (When I4 ≤ 15)
—Analog input 1 (14) present value

-Analog input 2 (I5) present value

3-11 Comparing Timer/Counter Present Values Using Comparators (P)

Timer (T), holding timer (\#), and counter (C) present values can be compared. The present values of the same type of timer or counter can be compared, or they can be compared to constants.

Operation

- Example 1
(When comparison setting is holding timer \#0 $\geq 12 \min 34 \mathrm{~s}$)

- Example 2
(When comparison setting is counter 1 (C1) \leq counter 2 (C2))

3-11-1 Settings in the Ladder Program Edit Screen

Comparator inputs are written in the Ladder Program Edit Screen. Settings are made in the Parameter Settings Screen.

Comparator addresses	P0 to Pf (16 points)

3-11-2 Settings in the Parameter Settings Screen

- Comparing Holding Timers and Constants
(When Holding Timer \#0 ≥ 12 min 34 s)

- Comparing Counters (When counter 1 (C1) \leq counter 2 (C2))

Comparator

Note Press the ALT Button to switch between comparison data 2 timer/ counter address and constants.

Comparison type		T: Timer \#: Holding timer C: Counter	
Comparison data	1	T: T0 to Tf Timers 0 to f \#: \#0 to \#7 Holding timers 0 to 7 C: C0 to Cf Counters 0 to f	* Size comparison between T and T or T and constant. * Size comparison between \# and \# or \# and constant. * Size comparison between C and C or C and constant.
	2	T: T0 to Tf Timers 0 to f \#: \#0 to \#7 Holding timers 0 to 7 C: C0 to Cf Counters 0 to f Constant: 00.00 to 99.99 when comparison type is $\mathrm{T} / \#$ 0000 to 9999 when comparison type is C	
Operator		>=: Timer/counter comparator bit turns ON when comparison data 1 \geq comparison data 2.	
		<=: Timer/counter comparator bit turns ON when comparison data 1 \leq comparison data 2.	
Monitor enabled/ disabled	A	Operating parameters can be monitored and settings changed.	
	D	Operating parameters cannot be monitored or settings changed.	

3-11-3 Parameter Monitor Screen Display

- Comparing Holding Timers and Constants
(When Holding Timer \#0 ≥ 12 min $34 \mathrm{~s})$
- Holding timer 0 (\#0) present value

- Comparing Counters
(When counter 1 (C1) \leq counter 2 (C2))

The time unit is determined as follows when timers or holding timers have been specified under comparison type:
a) When a constant has been set to as comparison data 2 , the time unit is automatically aligned with the unit for comparison data 1 timers or holding timers.
b) The time units are automatically aligned when the units are different for comparison data 1 and 2 timers.

3-12 Comparing the 8-Digit Counter (F) Present Value Using 8-Digit Comparators (G)

The present value of the 8-digit counter (F) can be compared to a constant.

Operation

Example for 8-Digit Counter ≥ 12000000

3-12-1 Settings in the Ladder Program Edit Screen

Comparator inputs are written in the Ladder Program Edit Screen. Settings are made in the Parameter Settings Screen.

8-Digit comparator addresses	G0 to G3 (4 bits)

3-12-2 Settings in the Parameter Settings Screen

- Example for 8-Digit Counter ≥ 12000000

8-Digit comparator address

[^1]Refer to page 17 for parameter setting methods.

Comparison item		8-Digit counter (FO)
Comparison data		Constant: 00000000 to 99999999
Operator		>=: Comparator bit turns ON when 8-digit counter present value \geq Comparison data.
		<=: Comparator bit turns ON when 8-digit counter present value \leq Comparison data.
Monitor enabled/ disabled	A	Operating parameters can be monitored.
	D	Operating parameters cannot be monitored.

3-12-3 Parameter Monitor Screen Display

- Example for 8-Digit Counter ≥ 12000000

3-13 Displaying Messages (Display Bits (D))

A user-specified message, the time the message is displayed, a timer/counter present value, or an analog conversion value can be displayed on the LCD screen. If multiple display functions are used, multiple data can be displayed on the same screen.

Display Bits Operation

- Operation Example 1

Monitors the system operation status.

Settings Details

- Operation Example 2

Displays the date and time that the system error occurred.

Settings Details

Note 1. The ZEN ladder program is executed in order of ascending line numbers. If more than one item is displayed on the same line, the display function that was executed last will be shown on the display and previous ones will be deleted.
2. The display clear function will erase all displays from the specified digit on (i.e., the display will be blank). If the display clear function is executed for the same line after another display function, the characters will still be erased from the specified digit on.

3-13-1 Settings in the Ladder Program Edit Screen

The display functions are written in the Ladder Program Edit Screen. Settings are made in the Parameter Settings Screen.

Execution condition

Display address	D0 to Df (16 points)

3-13-2 Settings in the Parameter Settings Screen

Display address

Backlight/display function screen switching	L0	No backlight; No switching to display function screen (See note 1.)
	L1	Backlight; No switching to display function screen (See note 1.)
	L2	No backlight; Switching to display function screen (See note 2.)
	L3	Backlight; Switching to display function screen (See note 2.)
Display start position	X (digit): Y (line): 0	00 to 11 to 3
Display object	CHR	Characters (12 max.: Alphanumeric characters and symbols)
	DAT	Month/day (5 digits: $\square \square / \square \square$)
	DAT1	Day/month (5 digits: $\square \square / \square \square$)
	CLK	Hour/minutes (5 digits: $\square \square: \square \square$)
	14, 15	Analog conversion (4digits: $\square \square . \square$)
	T0 to Tf	Timer present value (5 digits: $\square \square . \square \square$)
	\#0 to \#7	Holding timer present value (5 digits: $\square \square . \square \square$)
	C0 to Cf	Counter present value (4 digits: $\square \square \square \square$)
	F0	8-Digit counter present value (8 digits: $\square \square \square \square \square \square \square \square$)
Monitor enabled/ disabled	A	Operating parameters can be monitored.
	D	Operating parameters cannot be monitored.

Note 1. When L0 or L1 are selected to disable the display function screen, the display function screen will not be displayed automatically. Use operation buttons to move to the display function screen.
2. When L2 or L 3 are selected (switching to display function screen), the ZEN switches to the display function screen if the display function is enabled and the specified data is displayed. The Main Screen will no longer be displayed. To display the Main Screen, change the CPU Unit to STOP mode.

Settings when Character (CHR) Selected

Move the
highlighted cursor to the display character string column.

Character string cursor position

$\boldsymbol{(3)}$

Use the Up/Down Buttons to scroll through the candidate characters.

Alternates display of the candidate character and the position mark.

Candidate is highlighted and flashing.
(4)

(3)

$0 \times$

Use the Right Button to move the character string position to the right. Use the Left Button to move the character string to the left.

Table of Display Characters

	!	:	\%	*	\%	\%		\%)	\%	+	:	\cdots	"	\%
\%	1	2	3	4	\%	\%	7	\%	\%	\#	\because	¢	":"	\cdots	\%
\%	F	\%	-	-	E	F	E	1	T	I	<	!	1	-	-
F	\%	F	$=$	T	1	!	B	\%	Ө	7	[7	\%	\therefore	\cdots
	\%	b	\%	-	=	$\stackrel{\square}{7}$	F	\%	1	I	¢	1	\%	T	\%
F	\because	+	$=$	t.	L	\%	!	x	\%	\because	¢	1	$\stackrel{ }{7}$		

3-14 Using Button Input Bits (B)

The operation buttons are assigned operations of input bits. They are useful when checking program operations or forcefully resetting timer/ counter present values.

Button switch address	Operation button	
B0	ESC	ESC 0
B1	OK	OK
B2	Down	2
B3	Left	
B4	Right	
B5	Up	(4)
B6	DEL	©EL 6
B7	ALT	ALT 7

Using Button Input Bits

- The buttons can also be used as "hidden keys" for software resets of counters or holding bit present values.

Press the DEL+ALT Buttons simultaneously during operation to reset the counter C2 present value to 0 and the holding bit H 5 to OFF.

Note

- When a button is pressed, e.g., to make a menu selection, the operation defined for the button in the ladder program as a button switch (B) will also be executed. This may cause unexpected results, such as an output turning ON/OFF. Be sure to test the program completely.
- The ESC+OK Buttons are used to switch menu displays. We recommend not using these as button switches (B).

SECTION 4 Special Functions

This section describes how to protect ladder programs, stabilize inputs, make LCD screen adjustments, and make summer time settings.
4-1 Protecting Programs 88
4-1-1 Setting a Password 89
4-1-2 Deleting Registered Passwords 89
4-2 Stabilizing Input Operations 90
4-3 Changing Backlight Automatic Cutout Time 92
4-4 Setting Daylight Saving Time (DST) 93
4-5 Reading System Information 94

4-1 Protecting Programs

The ZEN has a password function to prevent incorrect manipulation of ladder programs or settings data by other operators.

|| Precautions for Correct Use ||

Always record your password for future reference when using the password function. You will no longer be able to operate the ZEN if you forget your password.

- The password setting range is 0000 to 9999 (4 decimal digits).
- You will no longer be able to perform the following operations if the password is not input correctly.
Edit ladder programs
Clearing programs
Monitor ladder programs
Change or delete the password
Set the input filter
RS-485 communications settings
- When any of these functions is selected from the menu, the Password Input Screen will be displayed. If the password is input correctly, the display will move to the next screen for the selected function. However, if the password is input incorrectly, the next screen will not be displayed.

4-1-1 Setting a Password

Select
Other.

Press the OK Button to change to a flashing cursor and enable a password to be set.

Set the password.
Use the Left and Right Buttons to move to the digit to be changed.
Use the Up/Down Buttons to input a numeral between 0 and 9.

Press the OK Button. A confirmation message will be displayed.

The O-icon will appear at the bottom right of the screen when a password has been registered.

Note The display will automatically change to the Waiting for Password Input Screen when making settings that require a password to be input. Use the same method as outlined above to input the registered password.

4-1-2 Deleting Registered Passwords

Press the OK Button to change to a flashing cursor and to enable password setting.

Input the registered password.

Use the Left and Right Buttons to move to the digit to be changed.
Use the Up/Down Buttons to input a numeral between 0 and 9 .

BACKLIGHT
INPUT FILTER SYSTEM INF
PRSSU0RD
CFHCEL
GREE

Press the OK Button to display a message asking whether or not to delete the set password.
If the input password does not match the registered password, the display will return to the original screen.

If the password was correct, press the OK Button to delete the password.

The On icon will disappear when the password is deleted.

If the input password does not match the registered password, a CHECK ERR message will be displayed. Re-enter the password correctly.

4-2 Stabilizing Input Operations

If external input contacts chatter, ZEN operation may become unstable. Set an input filter to stabilize operation. Input filters can be set separately for the CPU Unit and each Expansion I/O Unit.

Operation (Example: DC Input Circuits)


```
Select
Other/Input
filter.
```

PASSWORD
BACKLIGHT
SYSTEM INF

CPU Unit input
Expansion I/O Unit input
(Displayed only when Expansion Units are connected.)

Press the OK Button to display the Input Filter Settings Menu.
Use the Up and Down Buttons to select from the menu the Unit for which the input filter is to be set.

Press the OK Button to display the present setting.

Press the OK Button again to change to a flashing cursor and enable input filter settings to be made.

Use the Up/Down Buttons to switch between ON and OFF.

Press the OK Button to confirm the setting.
Press the OK Button again to complete the setting.

Note 1.The filter timers outlined in the following table are set for each input type when the input filter function is set.

Input specifications		Input filter not used	Input filter used
AC input	100 VAC	50 ms	70 ms
	240 VAC	100 ms	120 ms
DC input	15 ms	50 ms	

2.The input filter settings are read when the ZEN starts operation.

4-3 Changing Backlight Automatic Cutout Time

The LCD backlight automatically turns ON when button operations are performed. It then turns OFF automatically 2 minutes after button operations stop. The default backlight cutout setting of 2 minutes can be changed to 10 or 30 minutes or the backlight can be set to remain ON continuously.

Button operation	Operation starts	$\cdots \cdot$.	Operation stops		
Display function (when L1 or L3 is set)	$\begin{aligned} & \mathrm{OFF} \rightarrow \text { ON } \\ & -\dashv \models \text { DDO } \end{aligned}$	\ldots	$\begin{aligned} & \mathrm{ON} \rightarrow \mathrm{OFF} \\ & -\dashv \mathrm{DDO}^{2} \end{aligned}$	Cutout time	
Backlight status	ON	Remains ON.		Remains ON.	Turns OFF.

(3) ${ }^{-6}$

OK 1

Press the OK Button to display the current backlight cutout setting.
Press the OK Button again to change to a flashing cursor and enable backlight cutout time settings to be made.

Use the Up and Down Buttons to set the cutout time.

Press the OK Button to confirm the setting. Press the OK Button again to complete the setting.

Note The backlight cutout time is used not only to determine if and when the backlight turns OFF after button operations have stopped. If backlight has been specified to turn ON with the display function, the same setting is used to determine if and when the backlight turns OFF once the execution of the display function has been completed.

4-4 Setting Daylight Saving Time (DST)

Set the Daylight Saving Time (DST) function when using the ZEN in countries that use Daylight Saving Time (DST).

Press the OK Button to display the current settings.

Press the OK Button again to change to a flashing cursor and enable Daylight Saving Time (DST) settings to be made.
Use the Up and Down Buttons to make the setting.
2. NZ Type (for Daylight Saving Time (DST) in New Zealand)
AU Type (for Daylight Saving Time (DST) in Australia)
US Type (for Daylight Saving Time (DST) in USA)
E. EU Type (for Daylight Saving Time (DST) in Europe)
Manual (for manual settings)
Cancel (for no Daylight Saving Time (DST))

Press the OK Button to confirm the setting. Press the OK Button again to complete the setting.

Cancel	Daylight Saving Time (DST) settings are not made. Any Daylight Saving Time (DST) settings that have been made will be deleted.	
Manual	Moves the clock forward 1 hour.	
EU Type	Daylight Saving Time (DST) period: 2:00 a.m last Sunday in March to 2:00 a.m. last Sunday in October	Once the start time (2:00 a.m.) has been reached, the clock is moved forward 1 hour to 3:00 a.m. When the stop time (2:00 a.m) has been reached, the clock is moved backwards 1 hour to 1:00 a.m.
US Type	Daylight Saving Time (DST) period: 2:00 a.m first Sunday in April to 2:00 a.m. last Sunday in October	
AU Type	Daylight Saving Time (DST) period: 2:00 a.m last Sunday in October to 2:00 a.m. last Sunday in March	NZ Type Daylight Saving Time (DST) period: 2:00 a.m first Sunday in October to 3:00 a.m. last Sunday in March
Once the start time (2:00 a.m.) has been reached, the clock is moved forward 1 hour to 3:00 a.m. When the stop time (3:00 a.m) has been reached, the clock is moved backwards 1 hour to 2:00 a.m.		

Note When Daylight Saving Time (DST) has been set, an " S " will appear at the top right of the Time Settings Screen during the Daylight Saving Time (DST) period.

4-5 Reading System Information

The software version of the CPU Unit, the number of CPU Unit I/O points, and other information can be read.

```
Select Other/
System
information.
```

```
FGSEMGRD
```

 INFUT FILTER
    ```
```

```
    INFUT FILTER
```

```

0 K
(5) / 2


\section*{SECTION 5}

\section*{Optional Products}

This section describes how to mount Battery Units, use Memory Cassettes, and how to connect the ZEN Support Software.
5-1 Mounting Battery Units ..... 96
5-2 Using Memory Cassettes ..... 97
5-3 Connecting the ZEN Support Software ..... 99

\section*{5-1 Mounting Battery Units}

Ladder programs and all settings are saved to the CPU Unit EEPROM but calendar, clock, and holding timer bits and holding timer/ counter present values are held by the capacitor. Therefore, if the power supply is interrupted for 2 days or more (at \(25^{\circ} \mathrm{C}\) ), this data will be reset. Mount a Battery Set (optional) for systems where the power supply may be interrupted for long periods.


\section*{Mounting Method}

1,2,3... 1. Tilt the Battery Unit to the side and insert the claw at the bottom of the Battery Unit into the mounting hole on the left side of the CPU Unit.

2. Connect the Battery Unit cord to the CPU Unit connector.

3. Push the claw at the top of the Battery Unit into the CPU Unit.


\section*{\(\triangle\) WARNING}

A lithium battery is used in the Battery Unit. Do not short the battery terminals or charge, disassemble, deform under pressure, or incinerate the battery. Doing any of these may occasionally result in serious injury due to ignition or rupture of the battery.
Never use any battery that has been dropped on the floor or otherwise subjected to excessive shock.

\section*{|| Precautions for Correct Use ||}
- Turn OFF the power supply to the CPU Unit before mounting the Battery Unit.
- Do not remove the label from the left side of the CPU Unit if a Batter Unit is not mounted.

Note The Battery Unit has a life of 10 years min.

\section*{5-2 Using Memory Cassettes}

Optional Memory Cassettes can be used to save the ladder program and settings and to copy programs and settings to other CPU Units.

\section*{Mounting Memory Cassettes}

1,2,3... 1. Remove the connector cover on the front of the ZEN.

(Use a flat-blade screwdriver if the cover is difficult to remove.)
2. Mount the Memory Cassette.

|| Precautions for Correct Use ||
Always turn OFF the power supply to the CPU Unit before removing or mounting Memory Cassettes.

\section*{Transferring Programs}


Select Cassette.

The Operation Menu for Memory Cassettes will be displayed.
Use the Up/Down Buttons to move the flashing cursor and press the OK Button to select an operation.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Menu } & \multicolumn{1}{c|}{ Operation } \\
\hline Save (CPU Unit to MC) & \begin{tabular}{l} 
Saves CPU Unit programs to the Memory Cassette. Existing programs \\
on the Memory Cassette will be overwritten.
\end{tabular} \\
\hline Load (MC to CPU Unit) & Transfers programs from the Memory Cassette to the CPU Unit. \\
\hline Erase & Initializes the Memory Cassette (i.e. deletes programs). \\
\hline
\end{tabular}

Note 1. The transferable program includes the ladder programs, parameters, and all settings data. The present values for the timers, holding timers, counters, and holding bits cannot be transferred.
2. Only error-free programs can be transferred. The program will not be transferred if there is any illegal data in the program.
3. The Memory Cassette can be written to up to 100,000 times.

\section*{5-3 Connecting the ZEN Support Software}

The ZEN Support Software can be used for programming and monitoring. Refer to the ZEN-SOFT01-V4 ZEN Support Software Operation Manual (Z184-E1-02) for information on the functions and operation of the ZEN Support Software.

CPU Units


\section*{Computer Specifications}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Conditions } \\
\hline Operating system & \begin{tabular}{l} 
Windows 95, 98, ME, 2000, XP, NT4.0 Service \\
Pack 3
\end{tabular} \\
\hline CPU & \begin{tabular}{l} 
Pentium 133 MHz or faster \\
(Pentium 200 MHz or faster recommended)
\end{tabular} \\
\hline Memory & 64 Mbytes min. \\
\hline HD capacity & 40 Mbytes free disk space min. \\
\hline CD-ROM drive & Required. \\
\hline Communications & 1 serial (COM) port \\
\hline Keyboard and mouse & Required \\
\hline Monitor & \(800 \times 600\) dots (SVGA) min.; 256 colors min. \\
\hline
\end{tabular}

Note When connecting to a computer that does not have a serial port, connect an RS-232C-USB Conversion Cable to the ZEN-CIF01 Computer Connecting Cable. An OMRON CS1W-CIF31 Conversion Cable can be used (cable length: 50 cm ).

\section*{SECTION 6 Troubleshooting}

This section lists the error messages and provides probable causes and countermeasures for troubleshooting.
6-1 Troubleshooting ..... 102
6-2 Error Messages. ..... 102
6-3 Deleting Error Messages ..... 104

\section*{6-1 Troubleshooting}

Search for the cause of the error and take immediate countermeasures if ERR or any other error message appears on the LCD screen.


\section*{6-2 Error Messages}

The following tables list the error messages that are displayed when an error occurs.

\section*{Power ON but No Operation}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{|c|}{ Probable cause } & \multicolumn{1}{c|}{ Possible solution } \\
\hline MEMORY ERR & Program error. & \begin{tabular}{l} 
The ladder program and parameter settings \\
have been cleared. Write a program to the \\
ZEN again.
\end{tabular} \\
\hline I/O VRFY ERR & \begin{tabular}{l} 
Bit type that cannot be \\
used with system \\
configuration included in \\
ladder program. (See note.)
\end{tabular} & Remove the illegal bit type from the program. \\
\hline
\end{tabular}

\section*{Note I/O Verification Error}

Analog comparators (A): Used with AC power supply type.
Display function (D):
- For AC power supply types, analog-converted values (14/15) are specified as the displayed items.

\section*{Error at Power ON or During Operation}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{|c|}{ Probable cause } & \multicolumn{1}{c|}{ Possible solution } \\
\hline MEMORY ERR & Program error. & \begin{tabular}{l} 
Execute the All Clear operation and then re- \\
write the program.
\end{tabular} \\
\hline I2C ERR & \begin{tabular}{l} 
Communications error \\
between Memory and \\
RTC.
\end{tabular} & \begin{tabular}{l} 
Press any operation button and clear the \\
error. Replace the CPU Unit if the error \\
occurs frequently.
\end{tabular} \\
\hline
\end{tabular}

\section*{Error During Program Transfer from Memory Cassette}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Error message } & \multicolumn{1}{|c|}{ Probable cause } & \multicolumn{1}{c|}{ Possible solution } \\
\hline M/C ERR & \begin{tabular}{l} 
Memory cassette \\
program error.
\end{tabular} & \begin{tabular}{l} 
Save the error-free program to the Memory \\
Cassette again.
\end{tabular} \\
\hline
\end{tabular}

\section*{6-3 Deleting Error Messages}

A flashing error message is displayed when an error occurs. Turn OFF the power supply and remove the cause of the error.
Press any operation button to delete the error message. Once the error has been removed the display will return to normal.

\section*{Error Message} Display Screen
I. 0 URFY ERR


Press either the ESC, OK, DEL, ALT, Left/
Right, or Up/Down Buttons. Any button can be pressed to delete the error message.

Press any button to return to normal display.

Note The error display will remain for internal errors that cannot be fixed, such as I/O Bus errors and I/O Unit Over errors.

ERR will remain on the display.

\section*{Appendix A}

\section*{Specifications}

\section*{Ratings}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Item }} & \multicolumn{2}{|c|}{ Specifications } \\
\cline { 2 - 3 } & \multicolumn{1}{|c|}{ ZEN-10C3AR-A-V2 } & \multicolumn{1}{c|}{ ZEN-10C3DR-D-V2 } \\
\hline Power supply voltage & 100 to \(240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}\) & 12 to 24 VDC (ripple: \(5 \%\) max.) \\
\hline \begin{tabular}{l} 
Rated power supply \\
voltage
\end{tabular} & 85 to 264 VAC, \(47 / 63 \mathrm{~Hz}\) & 10.8 to 28.8 VDC \\
\hline Power consumption & \begin{tabular}{l}
100 VAC: Approx. 4 VA \\
240 VAC: Approx. 5.6 VA
\end{tabular} & \(12 / 24 \mathrm{VDC:}\) Approx. 2.5 W \\
\hline Inrush current & 2 A max. & 50 A max. \\
\hline Ambient temperature & 0 to \(55^{\circ} \mathrm{C}\) & \\
\hline Ambient humidity & \(10 \%\) to \(90 \%\) (with no condensation) \\
\hline Storage temperature & -20 to \(75^{\circ} \mathrm{C}\) \\
\hline Terminal block & Solid-wire terminal block, tightening torque: 0.5 to \(0.6 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline Degree of protection & IP20 (Mounted inside a control panel) \\
\hline
\end{tabular}

\section*{Performance Specifications}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Specifications } \\
\hline LCD display & 12 characters x 4 lines with backlight \\
\hline Operation buttons & 8 buttons (4 cursor buttons and 4 operation buttons) \\
\hline User program memory & EEPROM built into CPU Unit and Memory Cassettes (optional) \\
\hline \(\begin{array}{l}\text { Data backup for power } \\
\text { interruptions }\end{array}\) & \(\begin{array}{l}\text { Internal holding bit status, holding timer/counter present values, } \\
\text { calendar and clock (year, month, day of month, day of week, time) } \\
\text { Super capacitor backup time: } 2 \text { days max. (at 25 }\end{array}\) \\
Life of optional battery: 10 years max. (at \(25^{\circ} \mathrm{C}\) )
\end{tabular}\(]\)

\section*{Approved Standards}
\begin{tabular}{|c|c|}
\hline Safety standard & \begin{tabular}{l}
cULus: UL508/CSA C22.2 No.142 Class I Div2 (pending approval) \\
EN/IEC 61131-2 clause 11 (Overvoltage category 2 and Pollution degree II, conforms to IEC60664-1)
\end{tabular} \\
\hline \multirow[t]{2}{*}{EMC (See note.)} & \begin{tabular}{lll} 
Radiation Field Emission & CISPR11 & Class A, Group 1 \\
Noise Terminal Voltage Emission & CISPR11 & Class A, Group 1
\end{tabular} \\
\hline & \begin{tabular}{l}
Electrostatic Discharge Immunity IEC 61000-4-2 In air: 8 kV , In contact: 6 kV \\
Electromagnetic Field Immunity IEC 61000-4-3 \(10 \mathrm{~V} / \mathrm{m}\) \\
Electrical Fast Transient/Burst Immunity
\end{tabular} \\
\hline
\end{tabular}

Note The ZEN complies with EN/IEC 61131-2 clause 8.

\section*{Programming Specifications}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \\
\hline Control method & Stored program control \\
\hline \begin{tabular}{l} 
I/O control \\
method
\end{tabular} & Cyclic scan \\
\hline \begin{tabular}{l} 
Programming \\
language
\end{tabular} & Ladder diagram \\
\hline \begin{tabular}{l} 
Program \\
capacity
\end{tabular} & 96 lines (up to 3 inputs and 1 output per line) \\
\hline \begin{tabular}{l} 
Maximum No. of \\
control I/O points
\end{tabular} & 10 I/O points \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Item & \multicolumn{2}{|r|}{Specifications} \\
\hline \multirow[t]{15}{*}{Memory areas} & CPU Unit input bits (I) & 10 to I5, 6 bits \\
\hline & CPU Unit output bits (Q) & Q0 to Q3, 4 bits \\
\hline & Work bits (M) & M0 to Mf, 16 bits \\
\hline & Holding bits (H) & H0 to Hf, 16 bits \\
\hline & Button switches (B) & B0 to B7, 8 bits \\
\hline & Timers (T) & T0 to Tf, 16 timers \\
\hline & Holding timers (\#) & \#0 to \#7, 8 timers \\
\hline & Weekly timers (@) & @ 0 to @f, 16 timers (not supported for LED-type CPU Units) \\
\hline & Calender timers (*) & *0 to \(* f, 16\) timers (not supported for LED-type CPU Units) \\
\hline & Counters (C) & C0 to Cf, 16 counters \\
\hline & 8-Digit Counter (F) & F0, 1 counter \\
\hline & Display bits (D) & D0 to Df, 16 bits \\
\hline & Analog comparator (A) & A0 to A3, 4 comparators (CPU Units with DC power supply only) \\
\hline & Comparator (P) & P0 to Pf, 16 comparators \\
\hline & 8-Digit comparator (G) & G0 to G3, 4 comparators \\
\hline
\end{tabular}

\section*{Input Specifications}

\section*{CPU Units}

\section*{AC Inputs (Not Isolated)}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & Specifications & \multicolumn{3}{|c|}{Circuit drawing} \\
\hline Input voltage & 100 to 240 VAC \(+10 \%,-15 \%, 50 / 60 \mathrm{~Hz}\) & \multirow{7}{*}{\[
\begin{aligned}
& 100 \mathrm{to} \\
& 240 \mathrm{VAO} \\
& \theta
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow[t]{7}{*}{}} \\
\hline Input impedance & \(680 \mathrm{k} \Omega\) & & & \\
\hline Input current & \(0.15 \mathrm{~mA} / 100 \mathrm{VAC}, 0.35 \mathrm{~mA} / 240\) VAC & & & \\
\hline ON voltage & 80 VAC min. & & & \\
\hline OFF voltage & 25 VAC max. & & & \\
\hline ON response time & \multirow[t]{2}{*}{50 ms or 70 ms at 100 VAC (See note.) 100 ms or 120 ms at 240 VAC (See note.)} & & & \\
\hline OFF response time & & & & \\
\hline
\end{tabular}

Note Can be selected using the input filter settings.

DC Inputs 10 to 13 (Not Isolated)
\begin{tabular}{|c|c|c|}
\hline Item & Specifications & Circuit drawing \\
\hline Input voltage & 12 to 24 VDC +20\%, -10\% & \multirow[t]{7}{*}{} \\
\hline Input impedance & \(5.3 \mathrm{k} \Omega\) & \\
\hline Input current & 4.5 mA Typical (24 VDC) & \\
\hline ON voltage & 8 VDC min. & \\
\hline OFF voltage & 5 VDC max. & \\
\hline ON response time & 15 ms or 50 ms (See note.) & \\
\hline OFF response time & & \\
\hline
\end{tabular}

Note Can be selected using the input filter settings, except when IO is being used for high-speed input.

\section*{DC Inputs 14 and I5 (Not Isolated)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & Specifications & Circuit drawing \\
\hline \multirow[t]{7}{*}{DC inputs} & Input voltage & 12 to 24 VDC +20\%, -10\% & \multirow[t]{12}{*}{* When using analog function.} \\
\hline & Input impedance & \begin{tabular}{ll} 
PNP: & \(5.5 \mathrm{k} \Omega\) (14 VDC min.) \\
& \(100 \mathrm{k} \Omega\) (14 VDC max.) \\
NPN: & \(5.2 \mathrm{k} \Omega\)
\end{tabular} & \\
\hline & Input current & \begin{tabular}{l}
PNP: 4.3 mA , Typical (24 VDC) \\
NPN: 4.6 mA , Typical (24 VDC)
\end{tabular} & \\
\hline & ON voltage & 8 VDC min. & \\
\hline & OFF voltage & 3 VDC max. & \\
\hline & ON response time & \multirow[t]{2}{*}{15 ms or 50 ms (See note.)} & \\
\hline & OFF response time & & \\
\hline \multirow[t]{5}{*}{Analog inputs} & Input range & 0 to 10 V & \\
\hline & External input impedance & \(100 \mathrm{k} \Omega \mathrm{min}\). & \\
\hline & Resolution & 0.1 V (1/100 FS) & \\
\hline & Accuracy & \(\pm 1.5 \%\) FS (at ambient operating temperature within rated range) & \\
\hline & AD conversion data & 0 to 10.5 V in 0.1 V increments & \\
\hline
\end{tabular}

Note Can be selected using the input filter settings.

\section*{Output Specifications}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Specifications } & \multicolumn{1}{c|}{ Circuit drawing } \\
\hline \begin{tabular}{l} 
Max. switching \\
capacity
\end{tabular} & \begin{tabular}{l}
\(250 \mathrm{VAC} / 8 \mathrm{~A}(\cos \phi=1)\) \\
\(24 \mathrm{VDC} / 5 \mathrm{~A}\) \\
The total for all outputs must be 20 A \\
max. for each Unit.
\end{tabular} & \begin{tabular}{l} 
Each circuit is made up of an \\
independent common circuit.
\end{tabular} \\
\hline \begin{tabular}{l} 
Min. switching \\
capacity
\end{tabular} & \(5 \mathrm{VDC}, 10 \mathrm{~mA}\) & \\
\hline \begin{tabular}{l} 
Relay \\
durability
\end{tabular} & Electrical & \begin{tabular}{l} 
Resistive load: 50,000 times \\
Inductive load: 50,000 times ( \(\cos \phi=0.4)\)
\end{tabular} \\
\cline { 2 - 2 } & Mechanical & 10 million times
\end{tabular}

Guidelines for the normal durability of the ZEN relay outputs are shown in the following diagram.

Usage: 360 times/hour

-250 VAC resistive load
---
24 VDC resistive load/250 VAC inductive load --- 24 VDC inductive load ( 1.7 ms )

Note The switching capacity, switching durability, and applicable load area when actually using the relay depend on the type of load, environmental conditions, and switching conditions. Therefore, be sure to confirm these conditions for the actual machine before use.

\section*{External Dimensions}
- ZEN-10C3 \(\square\) R- \(\square-\mathrm{V} 2\)

- Dimensions with the Battery Unit Mounted

- Switching Power Supply Unit


\section*{Appendix B}

\section*{Ladder Program Execution}

\section*{Executing Ladder Programs}

ZEN executes up to 96 lines of a ladder program in one cycle from first to last line.
Starting from the first line of the bus bar, the ZEN repeatedly executes each line from left to right.


Note
1. The time from when processing starts at the bus bar until the bus bar is returned to at the first line again to execute the entire ladder program is called cycle time.
2. The output ON/OFF results cannot be used for inputs within the same cycle. The result scan be used from the next cycle onwards.


\section*{Cycle Time Calculation Method}
Cycle time ( \(\mu \mathrm{s}\) ) \(=\)
\begin{tabular}{|l|}
\hline \begin{tabular}{l} 
Common \\
processing \\
time
\end{tabular} \\
\hline
\end{tabular}

Ladder program execution time

Refer to the following table for ZEN execution times. The execution times are provided as a guide. External factors, button operations, execution of ZEN Support Software operations, and timing of the processing affects the actual processing times.

\section*{Common Processing Time}
\begin{tabular}{|c|c|}
\hline Unit type & Common processing time \\
\hline Economy-type CPU Units & \(850 \mu \mathrm{~s}\) \\
\hline
\end{tabular}

\section*{Ladder Program Execution Time}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Per line} & \begin{tabular}{l}
\(30 \mu \mathrm{~s}\) : Line containing program \\
\(7 \mu \mathrm{~s}\) : Empty lines
\end{tabular} & *1 \\
\hline \multirow[t]{8}{*}{Per output} & CPU Unit output bits (Q) & \multirow[t]{3}{*}{\(4 \mu \mathrm{~s}\)} & \multirow[t]{3}{*}{*2} \\
\hline & Work bits (M) & & \\
\hline & Holding bits (H) & & \\
\hline & Timers (T)/Holding timers (\#) & \(15 \mu \mathrm{~s}\) & *3 \\
\hline & Counters (C)/8-Digit Counters (F) & \(13 \mu \mathrm{~s}\) & \\
\hline & Display bits (D) & Hour and minute (CLK)/Year and month (DAT)/Month and day (DAT1): \(21 \mu \mathrm{~s}\) & \\
\hline & & Timers (T)/Holding timers (\#)/Counters (C)/Analog comparators: \(28 \mu \mathrm{~s}\) & \\
\hline & & Characters (CHR)/8-Digit Counters (F): \(38 \mu \mathrm{~s}\) & \\
\hline \multicolumn{2}{|l|}{Weekly timers (@)} & \(4 \mu \mathrm{~s}\) & *4 \\
\hline \multicolumn{2}{|l|}{Calendar timers (*)} & \(1 \mu \mathrm{~s}\) & \\
\hline \multicolumn{2}{|l|}{Analog comparators (A)} & \(2 \mu \mathrm{~s}\) & \\
\hline \multicolumn{2}{|l|}{Comparators (P)} & \(7 \mu \mathrm{~s}\) & *5 \\
\hline \multicolumn{2}{|l|}{8-Digit Comparators (G)} & \(4 \mu \mathrm{~s}\) & \\
\hline
\end{tabular}

\section*{Example Calculation of Ladder Program Execution Time}


Ladder program execution time \(=\) \((30 \times 5)+(4 \times 3)+15+4+7=188(\mu \mathrm{~s})\)

*1: For 5 lines

\section*{Appendix C}

\section*{Operating Mode at Startup}

The operating mode at startup depends on the presence of a user program as shown in the following table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
User \\
program
\end{tabular} & In CPU & No & Yes & No & Yes \\
\cline { 2 - 6 } & \begin{tabular}{c} 
In Memory \\
Cassette
\end{tabular} & No & No & Yes & Yes \\
\hline ZEN-10C3 \(\square\) R- \(\square\)-V2 & \begin{tabular}{l} 
STOP \\
mode
\end{tabular} & \begin{tabular}{l} 
RUN mode \\
with program in \\
CPU
\end{tabular} & \begin{tabular}{l} 
STOP mode \\
with program in \\
Memory Cassette
\end{tabular} & \begin{tabular}{l} 
RUN mode \\
with program in \\
CPU
\end{tabular} \\
\hline
\end{tabular}

Yes: Indicates that the user ladder program and parameter settings are correctly written.
No: Indicates that the user ladder program and parameter settings are not written or that the data is not correct.

\section*{Appendix D \\ Version Upgrades}

The following table shows the relationship between the versions and functionality of the ZEN CPU Unit and ZEN Support Software.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Date of upgrade} & \multicolumn{2}{|r|}{CPU Unit} & \multirow[t]{2}{*}{Support Software} \\
\hline & System software version & Main changes & \\
\hline \[
\begin{aligned}
& \text { January } \\
& 2002
\end{aligned}
\] & Ver. 1.10 & \begin{tabular}{l}
The following functions were added to the displays. \\
- A Clear Display function \\
- A Day/Month display object (DAT1)
\end{tabular} & \begin{tabular}{l}
The following functions were added to version 2.00 (ZEN-SOFT01-V2). \\
- Support for changes to display function \\
- Simulation function \\
- Improvements to functions, operating procedures, and displays
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { May } \\
& 2003
\end{aligned}
\] & Ver. 2.00 & \begin{tabular}{l}
- The number of timers, counters, weekly timers, calendar timers, and display areas was increased from 8 to 16 each and the number of holding timers was increased from 4 to 8. \\
- A new CPU Unit with 20 I/O points was added. \\
- The input circuits of CPU Units with DC power supply were made compatible with both PNP and NPN. \\
- A password input was added to the memory all clear function. \\
- The model numbers of CPU Units end in "-V1."
\end{tabular} & \begin{tabular}{l}
The following functions were added to version 3.00 (ZEN-SOFT01-V3). \\
- Support for V1 CPU Units with 20 I/O points \\
- Support for V1 CPU Units with 10 I/O points
\end{tabular} \\
\hline Aug 2005 & Ver. 3.00 & \begin{tabular}{l}
- New Economy-type CPU Units (ZEN10C3 \(\square\) R- \(\square\)-V2) with the following changes were added to the series. \\
Expansion I/O Units cannot be connected to Economy-type CPU Units. \\
- Multiple-day operation and pulse-output operation were added to weekly timers. \\
- Twin timer operation was added to the timers. \\
- An 8-digit counter and 8-digit comparators were added. \\
- The power supply voltage for CPU Units with DC power supplies and the transistor output voltage range was increased to 10.8 to 28.9 VDC. \\
- The accuracy of weekly timers and calendar timers was increased to \(\pm 15 \mathrm{~s}\) or less per month (at \(25^{\circ} \mathrm{C}\) ). \\
- The accuracy of analog inputs was increased to \(\pm 1.5 \%\) FS. \\
- Daylight Saving Time (DST) settings were added for Australia and New Zealand. \\
- Use the ZEN-SOFT01-V4 Support Software \\
Note The model numbers of CPU Units end in "-V2."
\end{tabular} & \begin{tabular}{l}
Support for the following Units was added to version 4.00 (ZEN-SOFT01-V4). \\
- Economy-type CPU Unit (ZEN-10C3 \(\square \mathrm{R}-\square-\mathrm{V} 2\) )
\end{tabular} \\
\hline
\end{tabular}

Note The number of the system software version in the CPU Unit is not related to the model number. The system software version of CPU Units with LCDs can be read by selecting SYSTEM INFO from the OTHER Menu. "V03.00" will be displayed as the system software version for V2 CPU Units.

\section*{Differences between CPU Units}

\section*{Specifications}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Item} & V2 CPU Units & V1 and Pre-V1 CPU Units \\
\hline \multicolumn{2}{|l|}{Structure} & Heat dissipation slits removed. & --- \\
\hline \multicolumn{2}{|l|}{Mounting direction} & Standard (Vertical) Installation and Horizontal Installation & Standard (Vertical) Installation \\
\hline \multicolumn{2}{|l|}{Power supply voltage for DC-input Models} & 10.8 to 28.8 VDC & 20.4 to 26.4 VDC \\
\hline \multicolumn{2}{|l|}{Time accuracy} & Within 15 seconds/month (at \(25^{\circ} \mathrm{C}\) ) & Within \(2 \mathrm{~min} / \mathrm{month}\) \\
\hline \multirow[t]{3}{*}{Internal bits} & Timers & Twin operation added. & ON delay, OFF delay, One-shot pulse, and Flashing pulse operation \\
\hline & Weekly timers & Operation between days and pulse operation added. & Only normal operation possible. \\
\hline & Additions & \begin{tabular}{l}
8-Digit counter ( \(150 \mathrm{~Hz}, 1\) counter) \\
8-Digit comparator
\end{tabular} & --- \\
\hline \multicolumn{2}{|l|}{Daylight Saving Time (DST)} & Australia and New Zealand added. & Manual, Europe, and America \\
\hline \multicolumn{2}{|l|}{LCD contrast adjustment} & Not required. & Supported. \\
\hline \multicolumn{2}{|l|}{Menu displays} & Node number setting deleted. & --- \\
\hline
\end{tabular}

\section*{Memory Areas}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Area} & \multicolumn{5}{|c|}{CPU Unit} \\
\hline & \multicolumn{2}{|r|}{V2 CPU Units} & \multicolumn{2}{|r|}{V1 CPU Units} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \begin{array}{c}
\text { Pre-V1 CPU } \\
\text { Units }
\end{array} \\
\hline \text { 10-point } \\
\hline
\end{gathered}
\]} \\
\hline & 10-point & 20-point & 10-point & 20-point & \\
\hline CPU Unit input bits (I) & 6 & 12 & 6 & 12 & 6 \\
\hline CPU Unit output bits (Q) & 4 (See note.) & 8 & 4 & 8 & 4 \\
\hline Timers (T) & \multicolumn{4}{|l|}{16} & 8 \\
\hline Holding timers
(\#) & \multicolumn{4}{|l|}{8} & 4 \\
\hline Counters (C) & \multicolumn{4}{|l|}{16} & 8 \\
\hline Weekly timers (@) & \multicolumn{4}{|l|}{16} & 8 \\
\hline Calendar timers
(*) & \multicolumn{4}{|l|}{16} & 8 \\
\hline Displays (D) & \multicolumn{4}{|l|}{16} & 8 \\
\hline Work bits (M) & \multicolumn{5}{|l|}{16} \\
\hline Holding bits (H) & \multicolumn{5}{|l|}{16} \\
\hline Expansion I/O Unit input bits (X) & \multicolumn{5}{|l|}{12} \\
\hline Expansion I/O Unit output bits (Y) & \multicolumn{5}{|l|}{12} \\
\hline Analog comparators (A) & \multicolumn{5}{|l|}{4} \\
\hline Comparators (P) & \multicolumn{5}{|l|}{16} \\
\hline 8-Digit counter
(F) & \multicolumn{2}{|l|}{1} & \multicolumn{3}{|l|}{---} \\
\hline \[
\begin{aligned}
& \hline \text { 8-Digit } \\
& \text { comparator (G) }
\end{aligned}
\] & \multicolumn{2}{|l|}{4} & \multicolumn{3}{|l|}{---} \\
\hline
\end{tabular}

Note CPU Units with communications: 3 points

\section*{Connectable Expansion I/O Units}

Expansion I/O Units cannot be connected to Economy-type CPU Units.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{CPU Units} & \multirow[t]{2}{*}{Supported Expansion I/O Units} \\
\hline Version & CPU Unit type & Power supply & Model & \\
\hline \multirow[t]{2}{*}{V2} & \multirow[t]{2}{*}{Economy type} & AC & ZEN- \(\square \mathrm{C} 3\) AR-A-V2 & \multirow[t]{2}{*}{Not supported.} \\
\hline & & DC & ZEN- \(\square\) C3DR-D-V2 & \\
\hline \multirow[t]{2}{*}{V1 and Pre-V1} & \multirow[t]{2}{*}{Standard LCD type LED type} & AC & \[
\begin{aligned}
& \text { ZEN- } \square \text { C1AR-A-V1 } \\
& \text { ZEN- } \square \text { C1AR-A } \\
& \text { ZEN- } \square \text { C2AR-A-V1 } \\
& \text { ZEN- } \square \text { C2AR-A }
\end{aligned}
\] & \multirow[t]{2}{*}{\begin{tabular}{l}
ZEN-4EA \\
ZEN-4ED \\
ZEN-4ER \\
ZEN-8EAR \\
ZEN-8EDR \\
ZEN-8EDT
\end{tabular}} \\
\hline & & DC & \[
\begin{aligned}
& \text { ZEN- } \square \text { C1D } \square-D-V 1 \\
& \text { ZEN- C1D } \square-D \\
& \text { ZEN- } \square \mathrm{C} 2 \mathrm{D} \square-\mathrm{D}-\mathrm{V} 1 \\
& \text { ZEN- } \square \mathrm{C} 2 \mathrm{D} \square-\mathrm{D}
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{Input Specifications}

DC Inputs IO to I3
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ V2 CPU Units } & \multicolumn{2}{c|}{ V1 CPU Units } \\
\hline Input voltage range & 10.8 to 28.8 VDC & 20.4 to 26.4 VDC \\
\hline Input impedance & \(5.3 \mathrm{k} \Omega\) & \(5 \mathrm{k} \Omega\) & \(4.8 \mathrm{k} \Omega\) \\
\hline ON voltage & 8 V & 16 V & \begin{tabular}{l} 
Internally connected to \\
power supply terminal
\end{tabular} \\
\hline Input commons & Independent common terminals
\end{tabular}

\section*{DC Inputs 14 and I5}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Item } & \multicolumn{1}{c|}{ V2 CPU Units } & \multicolumn{1}{c|}{ V1 and Pre-V1 CPU Units } \\
\hline \multirow{4}{*}{ DC inputs } & Input voltage range & 10.8 to 28.8 VDC & 20.4 to 26.4 VDC \\
\cline { 2 - 4 } & Input impedance & 5.2 to \(5.5 \mathrm{k} \Omega\) & \(5 \mathrm{k} \Omega\) \\
\cline { 2 - 4 } & ON voltage & 8 V & 16 V \\
\cline { 2 - 4 } & OFF voltage & 3 V & 5 V \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Analog \\
inputs
\end{tabular}} & Input impedance & \(100 \mathrm{k} \Omega\) min. & \(150 \mathrm{k} \Omega\) min. \\
\cline { 2 - 4 } & Accuracy & \begin{tabular}{l}
\(\pm 1.5 \% ~ \mathrm{FS}\) (at ambient \\
operating temperature within \\
rated range)
\end{tabular} & \begin{tabular}{l}
\(10 \%\) FS (at ambient operating \\
temperature within rated \\
range)
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Specifications}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ V2 CPU Units } & \multicolumn{1}{c|}{ V1 and Pre-V1 CPU Units } \\
\hline \begin{tabular}{l} 
Contact current for \\
Models with Relay \\
Outputs
\end{tabular} & \begin{tabular}{l}
8 A/contact \\
The total for all outputs \\
for each Unit must be \\
20 A max.
\end{tabular} & 8 A/contact \\
\hline
\end{tabular}

\section*{Compatibility}

\section*{Memory Cassette Compatibility}

Be aware of the following restrictions when using a Memory Cassette containing a program that was stored from a CPU Unit with a different version of system software.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Version of CPU Unit used to write the Memory Cassette}} & \multicolumn{5}{|r|}{Version of CPU Unit used to read the Memory Cassette} \\
\hline & & \multirow[t]{2}{*}{Ver. 1.00} & \multirow[t]{2}{*}{Ver. 1.10} & \multicolumn{2}{|l|}{Ver. 2.00 (V1 CPU Units)} & \multirow[t]{2}{*}{\[
\text { Ver. } 3.00 \text { (V2 }
\]
CPU Units)} \\
\hline & & & & 10 I/O points & 20 I/O points & \\
\hline \multicolumn{2}{|l|}{Ver. 1.00} & OK & OK & OK & OK & OK \\
\hline \multicolumn{2}{|l|}{Ver. 1.10} & Restrictions (See note 1.) & OK & OK & OK & OK \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Ver. 2.00 \\
(V1 CPU \\
Units)
\end{tabular}} & \[
10 \mathrm{I} / \mathrm{O}
\] points & Restrictions (See notes 1 and 2.) & \begin{tabular}{l}
Restrictions (See note \\
2.)
\end{tabular} & OK & OK & OK \\
\hline & \[
20 \mathrm{I} / \mathrm{O}
\] points & Restrictions (See notes 1, 2, and 3.) & Restrictions (See notes 2 and 3.) & Restrictions (See note 3.) & OK & Restrictions (See note 3.) \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Ver. } 3.00 \\
& \text { (V2 CPU Units) }
\end{aligned}
\]} & Restrictions (See notes 1, 2, and 4.) & Restrictions (See notes 2 and 4.) & Restrictions (See note 4.) & Restrictions (See note 4.) & OK \\
\hline
\end{tabular}

Note
1. The display functions (display clear: -CD \(\square\) and day/month display: DAT1) cannot be used and will be ignored.
2. Only the memory area ranges supported by the pre-V1 CPU Units can be used for Timers, Holding Timers, Counters, Weekly Timers, Calendar Timers, and Displays (i.e., only half of each).
3. Only 6 inputs and 4 outputs can be used in the CPU Unit I/O bits. Any others will be ignored.
4. Twin timer operation for timers, operation between days and pulse operation for weekly timers, the 8 -digit counter, and 8 -digit comparators cannot be used. New Zealand and Australia cannot be set for Daylight Saving Time (DST).

\section*{Compatibility of Programs Depending on Support Software Version}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multirow{2}{*}{ CPU Unit system software } & \multicolumn{4}{|c|}{ Support Software } \\
\cline { 3 - 6 } & \begin{tabular}{l} 
Ver. 1.00 \\
ZEN-SOFT01
\end{tabular} & \begin{tabular}{c} 
Ver. 2.00 \\
ZEN-SOFT01- \\
V2
\end{tabular} & \begin{tabular}{c} 
Ver. 3.00 \\
ZEN-SOFT01- \\
V3
\end{tabular} & \begin{tabular}{l} 
Ver. 4.00 \\
ZEN-SOFT01- \\
V4
\end{tabular} \\
\hline Ver. 1.00 & OK & OK & \begin{tabular}{l} 
Restrictions \\
(See notes 1 \\
and 2.)
\end{tabular} & \begin{tabular}{l} 
Restrictions \\
(See notes 1, \\
2, and 3.)
\end{tabular} \\
\hline Ver. 1.10 & \begin{tabular}{l} 
Restrictions \\
(See note 1.)
\end{tabular} & OK & \begin{tabular}{l} 
Restrictions \\
(See note 2.)
\end{tabular} & \begin{tabular}{l} 
Restrictions \\
(See notes 2 \\
and 3.)
\end{tabular} \\
\hline \begin{tabular}{l} 
Ver. 2.00 \\
(V1 CPU \\
Units)
\end{tabular} & 10 I/O points & \begin{tabular}{l} 
Restrictions \\
(See notes 1 \\
and 2.)
\end{tabular} & \begin{tabular}{l} 
Restrictions \\
(See note 2.)
\end{tabular} & OK & \begin{tabular}{l} 
Restrictions \\
(See note 3.)
\end{tabular} \\
\hline Ver. 3.00 (V2 CPU Units) & \begin{tabular}{l} 
Not \\
applicable.
\end{tabular} & \begin{tabular}{l} 
Not \\
applicable.
\end{tabular} & \begin{tabular}{l} 
Not \\
applicable.
\end{tabular} & OK \\
\hline
\end{tabular}

Note 1. The display functions (display clear: -CD \(\square\) and day/month display: DAT1) cannot be used and will be ignored.
2. Only the memory area ranges supported by the pre-V1 CPU Units can be used for Timers, Holding Timers, Counters, Weekly Timers, Calendar Timers, and Displays (i.e., only half of each).
3. Twin timer operation for timers, operation between days and pulse operation for weekly timers, the 8-digit counter, and 8-digit comparators cannot be used. New Zealand and Australia cannot be set for Daylight Saving Time (DST).

\section*{Appendix E \\ Application Examples}

\section*{Lighting Pattern Control}

\section*{Application}

The ZEN can help conserve energy if the lighting patterns required for offices and similar environments are set to the ZEN.
Use the switch operation to switch between lighting patterns.
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multirow{3}{*}{ Operation } & \multirow{3}{*}{ Switch } & \multicolumn{4}{|c|}{ Lighting group } \\
\cline { 3 - 6 } & & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) \\
\cline { 3 - 6 } & & (Q0) & (Q1) & (Q2) & (Q3) \\
\hline All lights ON & SW 1 (I0) & ON & ON & ON & ON \\
\hline Pattern 1 & SW 2 (I1) & ON & OFF & ON & OFF \\
\hline Pattern 2 & SW 3 (I2) & ON & ON & OFF & OFF \\
\hline All lights OFF & SW 4 (I3) & OFF & OFF & OFF & OFF \\
\hline
\end{tabular}

\section*{System Configuration}


Note:
Switches use momentary normally open contacts.


\section*{Program Example}


\section*{Escalator with Automatic Operation Function (Weekly Timer, OFF Delay Timer)}

\section*{Application}

The ZEN can be simply used to conserve energy for an escalator with an automatic operation function. The escalator can be set to operate continuously from 7:00 to 10:00 and 17:00 to 22:00 weekdays and then operate at other times and on weekends only when people approach the escalator.

\section*{System Configuration}

R S T


\section*{Program Example}


Escalator operates

Off delay timer starts
Operates 3 minutes after person passes by the sensor.

\section*{Parameter Settings}

Weekly timer @ 0
(Mon to Fri: 7:00 to 10:00)


Weekly timer @ 1
(Mon to Fri: 17:00 to 22:00)


OFF delay timer TO


\section*{Water Supply Tank Control}

\section*{Application}

Basic water supply control is possible with the 61F Switch (without float) alone, however relay logic is required for inverter control of high-speed operation (when empty) and lowspeed operation (when half-full).

\section*{System Configuration}


\section*{Program Example}


Example: 3G3FV Inverter Speed


\section*{Greenhouse Air Circulation Control (1/3) (Bit Logic and Timer)}

\section*{Application}

The ZEN can be used to control circulation intermittently at set times. This circulates the carbon dioxide and warm air around plants in a greenhouse.
In this example, two circulation fans are operated at set intervals. The starting current is kept to a minimum and, as a result, the circulation fans are set to start operating at different times.

\section*{System Configuration}


\section*{Program Example}


\section*{Parameter Settings}

Offset start timer setting T0
\begin{tabular}{|lcc|}
\hline TG & 8 & 5 \\
TRE & A \\
RE. 60
\end{tabular}

Set to 30 seconds.

Operation timer setting T1
\begin{tabular}{|ll|}
\hline T1. & \% \\
TRES & H:M \\
RES & 01.00 \\
\hline
\end{tabular}

Set to 1 hour.

Operation timer setting T2


Set to 1 hour 30 seconds.

\section*{Greenhouse Air Circulation Control (2/3) (Calendar Timer and Weekly Timer)}

\section*{Application}

The ZEN can be used to operate circulation fans during winter nights only.
In this example, the circulation fans operate only at night (19:00 to 6:00) during winter (November 15 to March 20).
During the operation period, the fans operate intermittently, 60 minutes ON, 30 minutes OFF. The low startup current results in a 30 second difference in the fan startup times.

The start and stop operation days during winter (November 15 and March 20) are set using the calendar timer \((* 0)\).
The start and stop operation times during the night (19:00 and 6:00) are set using the weekly timer (@0).
The startup time difference and operate/stop cycles are set using the timer (T0 to T2).

\section*{System Configuration}


\section*{Program Example}


Fan 1 starts
Startup time offset timer
Fan 2 starts
Operation timer
Stop timer difference count

\section*{Parameter Settings}

Calendar Timer Setting *0


Start on Nov 15 and stop on Mar 20
Offset startup time setting T0
\begin{tabular}{|lcc|}
\hline Tg & 8 & 5 \\
TRE & 30. 00 \\
\hline
\end{tabular}

Set to 30 seconds.

Weekly timer setting @ 0


Start at 19:00 and stop at 6:00
Operation time setting T1


Set to 1 hour.

Stop time setting T2


Set to 30 minutes.

\section*{Greenhouse Air Circulation Control (3/3) (Analog Comparator)}

\section*{Application}

The ZEN can be used to start the circulation fans once the temperature has reached a set level. A low startup current would result from a difference in the fan startup times.

\section*{System Configuration}


\section*{Program Example}


\section*{Parameter Settings}

Analog Comparator A0
Offset startup timer setting T0
\begin{tabular}{|c|c|}
\hline  & \(v^{*}\) \\
\hline
\end{tabular}

Set temperature \(\geq 5.2 \mathrm{~V}\)


Set to 30 seconds.

\section*{Annunciator (Flashing Pulse Timer)}

\section*{Application}

The ZEN can be used to make an alarm light flash when errors occur.
In this example, a flashing pulse timer is used to make an alarm light flash when errors occur. Ladder programs can be created easily when a flashing pulse timer is used.

\section*{System Configuration}


\section*{Program Example}


\section*{Parameter Settings}

Flashing Pulse Timer
\begin{tabular}{|c|c|}
\hline TRE
RES
RES & \[
\begin{array}{lcc}
\hline F & 8 & A \\
& \text { wa. } 50.50
\end{array}
\] \\
\hline & \\
\hline
\end{tabular}

Set to flash at 0.5 s intervals.

\section*{Coin-operated Carwash (Holding Bits and Holding Timer)}

\section*{Application}

The ZEN can be used to change the operating time of a machine, such as a coinoperated car wash, depending on the number of coins inserted.

If a holding timer is used and holding bits used for the self-holding bits, the remaining time will not be reset if there are unexpected power interruptions.
In this example, the carwash operates for 3 minutes if one coin is inserted, 6 minutes if two coins are inserted, and 9 minutes if 3 coins are inserted.
A holding timer is used as the timer.

\section*{System Configuration}


\section*{Program Example}


\section*{Parameter Settings}

Holding Timer


Set to 3 minutes.

\section*{Warming Molding Machines (Weekly Timer and Bit Logic)}

\section*{Application}

The ZEN can be used to improve molding efficiency by warming up the molding machine before the work shift starts. This allows molding work to begin immediately at the start of the work shift.
When work shifts vary, pre-set weekly timers can be selected using a switch.

\section*{System Configuration}


\section*{Program Example}


\section*{Parameter Settings}

Weekly Timer Setting @0 to @2


\section*{Appendix F \\ Allocations and Setting Table \\ I/O Allocations for the ZEN-10C3 \(\square\) R- \(\square\)-V2}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline I/O & Unit name & Bit & Input device name & Input & \multicolumn{2}{|l|}{IN filter} \\
\hline \multirow[t]{8}{*}{\[
\begin{array}{|l}
\hline \text { Input } \\
\text { bits }
\end{array}
\]} & \multirow[t]{8}{*}{CPU Unit} & 10 & & \multirow[t]{4}{*}{AC DC V} & \multirow[t]{4}{*}{Yes} & \multirow[t]{4}{*}{No} \\
\hline & & 11 & & & & \\
\hline & & 12 & & & & \\
\hline & & 13 & & & & \\
\hline & & 14 & Normal input & \multirow[t]{4}{*}{AC DC V} & \multirow[t]{4}{*}{Yes} & \multirow[t]{4}{*}{No} \\
\hline & & & Analog voltage input & & & \\
\hline & & \multirow[t]{2}{*}{15} & Normal input & & & \\
\hline & & & Analog voltage input & & & \\
\hline
\end{tabular}

\section*{CPU Unit IN IO to I5}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline I/O & \multirow[t]{2}{*}{\begin{tabular}{l}
Unit name \\
CPU Unit
\end{tabular}} & Bit & \multicolumn{4}{|l|}{Output device name and specifications} \\
\hline \multirow[t]{4}{*}{Output bits} & & Q0 & & AC & DC V & A \\
\hline & \multirow[t]{3}{*}{} & Q1 & & & DC V & A \\
\hline & & Q2 & & AC & DC V & A \\
\hline & & Q3* & & AC & DC V & A \\
\hline
\end{tabular}

\section*{Work and Holding Bit Allocations}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bit type & Address & Application & Bit type & Address & Application \\
\hline \multirow[t]{16}{*}{Work bits} & M0 & & \multirow[t]{16}{*}{Holding bits} & H0 & \\
\hline & M1 & & & H1 & \\
\hline & M2 & & & H2 & \\
\hline & M3 & & & H3 & \\
\hline & M4 & & & H4 & \\
\hline & M5 & & & H5 & \\
\hline & M6 & & & H6 & \\
\hline & M7 & & & H7 & \\
\hline & M8 & & & H8 & \\
\hline & M9 & & & H9 & \\
\hline & Ma & & & Ha & \\
\hline & Mb & & & Hb & \\
\hline & Mc & & & Hc & \\
\hline & Md & & & Hd & \\
\hline & Me & & & He & \\
\hline & Mf & & & Hf & \\
\hline
\end{tabular}

\section*{Timer and Holding Timer Settings}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Timer & Address & Operation setting (See note.) & Setting time unit 1 & \[
\begin{gathered}
\hline \text { Setting time } \\
\text { unit } 2 \\
\text { (W only) } \\
\hline
\end{gathered}
\] & Set time & Application \\
\hline \multirow[t]{16}{*}{Timer} & T0 & X \(\quad\) O F W & H:M M:S S & H:M M:S S & & \\
\hline & T1 & X■OFW & H:M M:S S & H:M M:S S & & \\
\hline & T2 & X■OFW & H:M M:S S & H:M M:S S & & \\
\hline & T3 & X■OFW & H:M M:S S & H:M M:S S & & \\
\hline & T4 & X■OFW & H:M M:S S & H:M M:S S & & \\
\hline & T5 & X■OFW & H:M M:S S & H:M M:S S & & \\
\hline & T6 & X■OFW & H:M M:S S & H:M M:S S & & \\
\hline & T7 & X■OFW & H:M M:S S & H:M M:S S & & \\
\hline & T8 & X■OFW & H:M M:S S & H:M M:S S & & \\
\hline & T9 & X■OFW & H:M M:S S & H:M M:S S & & \\
\hline & Ta & X■OFW & H:M M:S S & H:M M:S S & & \\
\hline & Tb & X■O F W & H:M M:S S & H:M M:S S & & \\
\hline & Tc & X■O F W & H:M M:S S & H:M M:S S & & \\
\hline & Td & X■O F W & H:M M:S S & H:M M:S S & & \\
\hline & Te & X■O F W & H:M M:S S & H:M M:S S & & \\
\hline & Tf & X■OFW & H:M M:S S & H:M M:S S & & \\
\hline \multirow[t]{8}{*}{Holding timer} & \#0 & X & H:M M:S S & --- & & \\
\hline & \#1 & X & H:M M:S S & & & \\
\hline & \#2 & X & H:M M:S S & & & \\
\hline & \#3 & X & H:M M:S S & & & \\
\hline & \#4 & X & H:M M:S S & & & \\
\hline & \#5 & X & H:M M:S S & & & \\
\hline & \#6 & X & H:M M:S S & & & \\
\hline & \#7 & X & H:M M:S S & --- & & \\
\hline
\end{tabular}

Note X: ON delay; ■: OFF delay; O: One-shot pulse; F: Flashing pulse; W: Twin timer

\section*{Counter Settings}
\begin{tabular}{|c|c|c|c|}
\hline Counter address & \[
\begin{aligned}
& \text { Setting (No. of } \\
& \text { times) }
\end{aligned}
\] & \multicolumn{2}{|l|}{Application} \\
\hline C0 & & & Incrementing: Decrementing: Reset: \\
\hline C1 & & & Incrementing: Decrementing: Reset: \\
\hline C2 & & & Incrementing: Decrementing: Reset: \\
\hline C3 & & & Incrementing: Decrementing: Reset: \\
\hline C4 & & & Incrementing: Decrementing: Reset: \\
\hline C5 & & & Incrementing: Decrementing: Reset: \\
\hline C6 & & & Incrementing: Decrementing: Reset: \\
\hline C7 & & & Incrementing: Decrementing: Reset: \\
\hline C8 & & & Incrementing: Decrementing: Reset: \\
\hline C9 & & & Incrementing: Decrementing: Reset: \\
\hline Ca & & & Incrementing: Decrementing: Reset: \\
\hline Cb & & & Incrementing: Decrementing: Reset: \\
\hline Cc & & & Incrementing: Decrementing: Reset: \\
\hline Cd & & & Incrementing: Decrementing: Reset: \\
\hline Ce & & & Incrementing: Decrementing: Reset: \\
\hline Cf & & & Incrementing: Decrementing: Reset: \\
\hline
\end{tabular}

\section*{8-Digit Counter Settings}
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{c} 
Counter \\
address
\end{tabular} & \begin{tabular}{c} 
Setting \\
(No. of times)
\end{tabular} & Counting speed & \\
\hline F0 & & High Low & & \begin{tabular}{l} 
Incrementing: \\
Decrementing: \\
Reset:
\end{tabular} \\
\hline
\end{tabular}

\section*{Weekly Timer Settings}
\begin{tabular}{|l|l|l|l|c|c|c|c|}
\hline \begin{tabular}{c} 
Weekly \\
timer \\
address
\end{tabular} & & Start day & Stop day & \begin{tabular}{c} 
Start \\
time
\end{tabular} & \begin{tabular}{c} 
Stop \\
time
\end{tabular} & \begin{tabular}{c} 
Output \\
time \\
(mm:ss)
\end{tabular} & Application \\
\hline\(@ 0\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ 1\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ 2\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ 3\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ 4 ~\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ 5\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ 6\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ 7\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ 8\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ 9\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ a\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ b\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ c\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ d\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ e\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline\(@ f ~\) & NDP & SU MO TU WE TH FR SA & SU MO TU WE TH FR SA None & \(:\) & \(:\) & \(:\) & \\
\hline
\end{tabular}

Note N: Normal operation; D: Operation between days; P: Pulse operation
Calendar Timer Settings
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{c} 
Calendar \\
timer address
\end{tabular} & Start date & Stop date & \\
\hline\(* 0\) & & & Application \\
\hline\(* 1\) & & & \\
\hline\(* 2\) & & & \\
\hline\(* 3\) & & & \\
\hline\(* 4\) & & & \\
\hline\(* 5\) & & & \\
\hline\(* 6\) & & & \\
\hline\(* 7\) & & & \\
\hline\(* 8\) & & & \\
\hline\(* 9\) & & & \\
\hline\(* \mathrm{a}\) & & & \\
\hline\(* \mathrm{~b}\) & & & \\
\hline\(* \mathrm{c}\) & & & \\
\hline\(* \mathrm{~d}\) & & & \\
\hline\(* \mathrm{e}\) & & & \\
\hline\(* \mathrm{f}\) & & & \\
\hline
\end{tabular}

\section*{Analog Comparator Settings}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{|c}
\hline Analog \\
comparator \\
address
\end{tabular}} & \multicolumn{2}{|r|}{Comparison data 1} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Operator}} & \multicolumn{3}{|c|}{Comparison data 2} \\
\hline & Inputs & Input device and specifications & & & Input & t/ No. of points & Input device and specifications \\
\hline A0 & \[
\begin{array}{|l|}
\hline 14 \text { (la) } \\
15 \text { (lb) } \\
\hline
\end{array}
\] & & \(\leq\) & \(\geq\) & I5 (lb) & Constant ( . V) & \\
\hline A1 & \[
\begin{array}{|l|}
\hline 14(\mathrm{la}) \\
15(\mathrm{lb}) \\
\hline
\end{array}
\] & & & \(\geq\) & 15 (lb) & Constant ( . V) & \\
\hline A2 & \[
\begin{array}{|l|}
\hline 14(\mathrm{la}) \\
15(\mathrm{lb}) \\
\hline
\end{array}
\] & & & \(\geq\) & I5 (lb) & Constant ( . V) & \\
\hline A3 & \[
\begin{aligned}
& \hline 14 \text { (la) } \\
& 15 \text { (lb) } \\
& \hline
\end{aligned}
\] & & & \(\geq\) & 15 (lb) & Constant ( . V) & \\
\hline
\end{tabular}

\section*{Comparator Settings}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \begin{array}{c}
\text { Compar- } \\
\text { ator }
\end{array} \\
\text { address }
\end{gathered}
\]} & \multicolumn{3}{|r|}{Comparison data 1} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Operator}} & \multicolumn{4}{|c|}{Comparison data 2} \\
\hline & \multicolumn{2}{|l|}{Type} & Content & & & Typ & & Content & Constant \\
\hline P0 & T \(\square\) \# \(\square\) & C \(\square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & C \(\square\) & & \\
\hline P1 & T \(\square\) \# \(\square\) & C \(\square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & C \(\square\) & & \\
\hline P2 & T \(\square\) \# \(\square\) & C \(\square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & C \(\square\) & & \\
\hline P3 & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \\
\hline P4 & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \\
\hline P5 & T \(\square\) \# \(\square\) & C \(\square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \\
\hline P6 & T \(\square\) \# \(\square\) & C \(\square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & C \(\square\) & & \\
\hline P7 & T \(\square\) \# \(\square\) & C \(\square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \\
\hline P8 & T \(\square\) \# \(\square\) & C \(\square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & C \(\square\) & & \\
\hline P9 & T \(\square\) \# \(\square\) & C \(\square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & C \(\square\) & & \\
\hline Pa & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \\
\hline Pb & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \\
\hline Pc & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \\
\hline Pd & T \(\square\) \# \(\square\) & C \(\square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \\
\hline Pe & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \\
\hline Pf & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \(\leq\) & \(\geq\) & T \(\square\) \# \(\square\) & \(\mathrm{C} \square\) & & \\
\hline
\end{tabular}

\section*{8-Digit Comparator Settings}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{c} 
Comparator \\
address
\end{tabular} & Operator & Constant & Application \\
\hline G0 & \(\leq \quad \geq\) & & \\
\hline G1 & \(\leq \quad \geq\) & & \\
\hline G2 & \(\leq \geq\) & & \\
\hline G3 & \(\leq \geq\) & & \\
\hline
\end{tabular}

\section*{Display Function Settings}

\begin{tabular}{|l|l|l|}
\hline & Backlight & Display function display screen switching \\
\hline L0 & No & No \\
\hline L1 & Yes & No \\
\hline L2 & No & Yes \\
\hline L3 & Yes & Yes \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline CHR & Characters (12 digits max.) \\
\hline DAT & Month/day (5 digits: \(\square \square / \square \square\) ) \\
\hline DAT1 & Day/month (5 digits: \(\square \square / \square \square)\) \\
\hline CLK & Hour:minutes (5 digits: \(\square \square: \square \square\) ) \\
\hline 14/I5 & Analog conversion (4 digits: \(\square \square . \square\) ) \\
\hline T0 to Tf & \begin{tabular}{l} 
Timer present value \\
(5 digits: \(\square \square . \square \square\) )
\end{tabular} \\
\hline \#0 to \#7 & \begin{tabular}{l} 
Holding timer present value \\
(5 digits: \(\square \square . \square \square\) )
\end{tabular} \\
\hline C0 to Cf & \begin{tabular}{l} 
Counter present value \\
(4 digits: \(\square \square \square \square\) )
\end{tabular} \\
\hline F0 & \begin{tabular}{l} 
8-Digit counter present value \\
(8 digits: \(\square \square \square \square \square \square \square \square\) )
\end{tabular} \\
\hline
\end{tabular}

\section*{Index}

\section*{A-B}
additional functions for bit outputs 21,51
allocations
allocation tables 139
I/O allocations 24, 139
alternate operation \(4,22,51\)
analog inputs 74
application
examples 125-137
available models 9
backlight
changing automatic cutout time 92
Battery Unit
mounting 96
blank lines
deleting 59
button switches 12
using 85

\section*{C}
calendar timers 72
characteristics 107
CLOCK 44
comparators
addresses 50
analog 74
comparing present values 77, 80
conduit installation 30
connection lines 53
deleting 58
counters
addresses \(22,50,52\)
comparing values 77,80
using 64
CPU Units
available models 9
specifications 108,110

\section*{D}
date
setting 44
Daylight Saving Time (DST)
setting 93
dimensions 111
DIN track 25
mounting 28
display bits addresses 23, 52
displaying messages 82
display language 43
display screen 11
duct installation 29

\section*{E-H}
error messages
deleting 104
meaning 102
false inputs 36
features 8
flashing pulse timer 61
holding timers 60
/O bits
allocation 24
inductive loads 37,38
input devices
connecting 35
inputs
analog 74
changing 57
deleting 58
input bits 21
input filter 90
stabilizing input operations 90
wiring input lines 31
writing 49
inrush current
suppressing 39
installation 28
internal holding bits 21

\section*{L}

Ladder Program Edit Screen settings
analog inputs 75
calendar timers 72
comparing present values 77, 80
counters 64
display bits 82
timers and holding timers 62
weekly timers 68
ladder programs
See programs
language
selecting display language 43
leakage current 36
limit switches
preventing false inputs 36
lines
inserting 58

\section*{M}
memory
memory areas \(21,50,51\)
Memory Cassettes 9
mounting 97
transferring programs 98
MONITOR 56
mounting 28
Battery Units 96


OFF delay timer 60
ON delay timer 60
one-shot pulse timer 61
operating mode 56
RUN mode 13,14
STOP mode 13, 14
operation
confirming 55
preparation 25
operation buttons 12
optional products 10
outputs
changing additional bit output functions 57
deleting 58
output bits 21
wiring output circuits 38
writing 50

\section*{P}

PARAMETER 14
Parameter Monitor Screen Display
analog comparators 76
calendar timers 73
comparing present values 79,81
counters 66
timers and holding timers 63
weekly timers 71
Parameter Settings Screen settings
analog comparators 76
calendar timers 72
comparing present values 78,80
counters 65
display bits 83
timers and holding timers 62
weekly timers 69
password
deleting 89
setting 89
photoelectric switches
preventing false inputs 36
power cables 29
power supply
wiring 31
Programming Device
available models 10
programs
clearing 46
correcting 57
creating 46
examples 125
executing 113
execution time 114
protecting 88
writing 47
proximity switches
preventing false inputs 36

\section*{R-S}
reset input 62, 64
reset operation 22, 51
set operation 22,51
settings
setting sheets 139
specifications
general 105, 106
input 108
output 110
Support Software 3
connecting 99
switching capacity 110
system configuration 8
system information
reading 94

\section*{T-W}
time
setting 44
timers 60
addresses 22, 50, 52
calendar timers 72
comparing values 77, 80
flashing pulse timer 61
OFF delay timer 60
ON delay timer 60
one-shot pulse timer 61
twin timer 61
weekly timers 67
trigger input 60
troubleshooting 102
weekly timers 67
wiring 29
I/O 46
work bits 21

\section*{Revision History}

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. Z234-E1-01


Revision code
The following table outlines the changes made to the manual during each revision. Page numbers refer to the previous version.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{c} 
Revision \\
code
\end{tabular} & \multicolumn{1}{c|}{ Date } & Revised content \\
\hline 01 & August 2005 & Original production (for ZEN-10C3 \(\square\) R- \(\square\)-V2 models) \\
\hline
\end{tabular}

\section*{OMRON Corporation Industrial Automation Company}

\author{
Control Devices Division H.Q. \\ Analog Controller Division \\ Shiokoji Horikawa, Shimogyo-ku, \\ Kyoto, 600-8530 Japan \\ Tel: (81)75-344-7080/Fax: (81)75-344-7189
}

\section*{Regional Headquarters} OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388
OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.

Tel: (1)847-843-7900/Fax: (1)847-843-8568
OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue, \#11-01, UE Square, 239920 Singapore
Tel: (65)6835-3011/Fax: (65)6835-2711
OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower, 200 Yin Cheng Road (M),
Shanghai, 200120 China
Tel: (86)21-5037-2222/Fax: (86)21-5037-2200```


[^0]:    Analog comparator address $\quad$ A0 to A3 (4 comparators)

[^1]:    Comparison item

